Concepts associés (54)
Mathématiques
thumb|upright|Raisonnement mathématique sur un tableau. Les mathématiques (ou la mathématique) sont un ensemble de connaissances abstraites résultant de raisonnements logiques appliqués à des objets divers tels que les ensembles mathématiques, les nombres, les formes, les structures, les transformations ; ainsi qu'aux relations et opérations mathématiques qui existent entre ces objets. Elles sont aussi le domaine de recherche développant ces connaissances, ainsi que la discipline qui les enseigne.
Dimension fractale
En géométrie fractale, la dimension fractale, D, est une grandeur qui a vocation à traduire la façon qu'a un ensemble fractal de remplir l'espace, à toutes les échelles. Dans le cas des fractales, elle est non entière et supérieure à la dimension topologique. Ce terme est un terme générique qui recouvre plusieurs définitions. Chacune peut donner des résultats différents selon l'ensemble considéré, il est donc essentiel de mentionner la définition utilisée lorsqu'on valorise la dimension fractale d'un ensemble.
Benoît Mandelbrot
Benoît Mandelbrot, né le à Varsovie (Pologne) et mort le à Cambridge (États-Unis), est un mathématicien polono-franco-américain. Il est le découvreur des fractales, nouvelle classe d'objets mathématiques, dont fait partie l'ensemble de Mandelbrot. Il a également travaillé sur des applications originales de la théorie de l'information, telles que la démonstration de la loi de Zipf, et sur des modèles statistiques financiers.
Ensemble de Cantor
En mathématiques, l'ensemble de Cantor (ou ensemble triadique de Cantor, ou poussière de Cantor), est un sous-ensemble remarquable de la droite réelle construit par le mathématicien allemand Georg Cantor. Il s'agit d'un sous-ensemble fermé de l'intervalle unité [0, 1], d'intérieur vide. Il sert d'exemple pour montrer qu'il existe des ensembles infinis non dénombrables mais négligeables au sens de la mesure de Lebesgue. C'est aussi le premier exemple de fractale (bien que le terme ne soit apparu qu'un siècle plus tard), et il possède une dimension non entière.
Autosimilarité
L'autosimilarité est le caractère d'un objet dans lequel on peut trouver des similarités en l'observant à différentes échelles. Une définition simplifiée, faisant appel à l'intuition, pourrait être : un objet autosimilaire est un objet qui conserve sa forme, quelle que soit l'échelle à laquelle on l'observe. La définition mathématique, formelle et rigoureuse, dépend du contexte. L’expression autosimilaire n’est pas encore reconnue par l’Académie française.
Triangle de Sierpiński
Le triangle de Sierpiński, ou tamis de Sierpińsky, également appelé par Mandelbrot le joint de culasse de Sierpiński, est une fractale, du nom de Wacław Sierpiński qui l'a décrit en 1915. Il peut s'obtenir à partir d'un triangle « plein », par une infinité de répétitions consistant à diviser par deux la taille du triangle puis à les accoler en trois exemplaires par leurs sommets pour former un nouveau triangle. À chaque répétition le triangle est donc de même taille, mais « de moins en moins plein ».
Flocon de Koch
Le flocon de Koch () est l'une des premières courbes fractales à avoir été décrites, bien avant l'invention du terme « fractal(e) » par Benoît Mandelbrot. Elle a été inventée en 1904 par le mathématicien suédois Helge von Koch. thumb|Les 4 premières étapes de la construction. thumb|Les 6 premières courbes successives en animation. On peut la créer à partir d'un segment de droite, en modifiant récursivement chaque segment de droite de la façon suivante : On divise le segment de droite en trois segments de longueurs égales.
Dimension de Hausdorff
En mathématiques, et plus précisément en topologie, la dimension de Hausdorff d'un espace métrique (X,d) est un nombre réel positif ou nul, éventuellement l'infini. Introduite en 1918 par le mathématicien Felix Hausdorff, elle a été développée par Abram Besicovitch, c'est pourquoi elle est parfois appelée dimension de Hausdorff-Besicovitch. L'exemple le plus simple est l'espace euclidien de dimension (au sens des espaces vectoriels) égale à n (ou plus généralement un espace vectoriel réel de dimension n muni d'une distance associée à une norme) : sa dimension de Hausdorff d est aussi égale à n, dimension de l'espace vectoriel.
Géométrie
La géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Ensemble de Mandelbrot
En mathématiques, lensemble de Mandelbrot est une fractale définie comme l'ensemble des points c du plan complexe pour lesquels la suite de nombres complexes définie par récurrence par : est bornée. alt=Représentation de l'ensemble de Mandelbrot|vignette|L'ensemble de Mandelbrot (en noir) L'ensemble de Mandelbrot a été découvert par Gaston Julia et Pierre Fatou avant la Première Guerre mondiale. Sa définition et son nom actuel sont dus à Adrien Douady, en hommage aux représentations qu'en a réalisées Benoît Mandelbrot dans les années 1980.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.