Théorème de Banach-SchauderEn analyse fonctionnelle, le théorème de Banach-Schauder, également appelé théorème de l'application ouverte, est un résultat fondamental qui affirme qu'une application linéaire continue surjective entre deux espaces de Banach (ou plus généralement : deux espaces vectoriels topologiques complètement métrisables) est ouverte. C'est une conséquence importante du théorème de Baire, qui affirme que dans un espace métrique complet, toute intersection dénombrable d'ouverts denses est dense.
FonctionnelleIn mathematics, a functional (as a noun) is a certain type of function. The exact definition of the term varies depending on the subfield (and sometimes even the author). In linear algebra, it is synonymous with linear forms, which are linear mappings from a vector space into its field of scalars (that is, they are elements of the dual space ) In functional analysis and related fields, it refers more generally to a mapping from a space into the field of real or complex numbers.
Théorème du graphe ferméEn mathématiques, le théorème du graphe fermé est un théorème d'analyse fonctionnelle qui donne une condition suffisante dans un certain cadre pour qu'une application linéaire soit continue. La réciproque est élémentaire et nécessite beaucoup moins d'hypothèses : le graphe de toute application continue d'un espace topologique quelconque X dans un espace séparé Y est toujours fermé dans X×Y.
Endomorphisme normalUn endomorphisme normal est un opérateur d'un espace de Hilbert qui commute avec son adjoint. Soient H un espace de Hilbert (réel ou complexe) et u un endomorphisme de H, d'adjoint u*. On dit que u est normal si Les endomorphismes autoadjoints sont normaux (cas u* = u). Les endomorphismes antiautoadjoints sont normaux (cas u* = –u). Les isométries vectorielles sont des endomorphismes normaux (cas u* = u).
Frigyes RieszFrigyes Riesz (Friedrich en allemand et Frédéric en français), né le à Győr et mort le à Budapest, est un mathématicien hongrois. Il est l'un des fondateurs de l'analyse fonctionnelle. Frigyes Riesz étudie à Budapest, Göttingen et Zurich. Il reçoit son doctorat en 1902 à l'université Loránd Eötvös de Budapest. Il est appelé en 1911 pour une chaire à l'université Kolozsvár (en allemand Klausenburg, en Transylvanie). Comme Kolozsvár (aujourd'hui Cluj-Napoca, Roumanie) devient roumaine en 1920 avec la Paix du Trianon, l'université est déplacée à Szeged.
René Maurice FréchetRené Maurice Fréchet (prénom usuel Maurice), né à Maligny le et mort à Paris le , est un mathématicien français. Mathématicien prolifique, il travailla entre autres en topologie, en théorie des probabilités et en statistiques. Maurice Fréchet fait des études secondaires au lycée Buffon à Paris, où il a comme professeur de mathématiques Jacques Hadamard qui l'encourage vivement et lui donne des cours particuliers.
Équation intégraleUne équation intégrale est une équation où la fonction inconnue est à l'intérieur d'une intégrale. Elles sont importantes dans plusieurs domaines physiques. Les équations de Maxwell sont probablement leurs plus célèbres représentantes. Elles apparaissent dans des problèmes des transferts d'énergie radiative et des problèmes d'oscillations d'une corde, d'une membrane ou d'un axe. Les problèmes d'oscillation peuvent aussi être résolus à l'aide d'équations différentielles.
Base de SchauderEn analyse fonctionnelle (mathématique), la notion de base de Schauder est une généralisation de celle de base (algébrique). La différence vient du fait que dans une base algébrique, on considère des combinaisons linéaires finies d'éléments, alors que pour des bases de Schauder elles peuvent être infinies. Ceci en fait un outil plus adapté pour l'analyse des espaces vectoriels topologiques de dimension infinie, en particulier les espaces de Banach. Les bases de Schauder furent introduites en 1927 par Juliusz Schauder, qui explicita un exemple pour C([0, 1]).
Algèbre d'opérateursIn functional analysis, a branch of mathematics, an operator algebra is an algebra of continuous linear operators on a topological vector space, with the multiplication given by the composition of mappings. The results obtained in the study of operator algebras are often phrased in algebraic terms, while the techniques used are often highly analytic. Although the study of operator algebras is usually classified as a branch of functional analysis, it has direct applications to representation theory, differential geometry, quantum statistical mechanics, quantum information, and quantum field theory.
Espace pseudo-métriqueEn mathématiques, un espace pseudo-métrique est un ensemble muni d'une pseudo-distance. C'est une généralisation de la notion d'espace métrique. Sur un espace vectoriel, tout comme une norme induit une distance, une semi-norme induit une semi-distance. Pour cette raison, en analyse fonctionnelle et dans les disciplines mathématiques apparentées, l'expression « espace semi-métrique » est utilisée comme synonyme d'espace pseudo-métrique (alors qu'« espace semi-métrique » a un autre sens en topologie).