Base canoniqueEn mathématiques, plus précisément en algèbre linéaire, certains espaces vectoriels possèdent une base qualifiée de canonique ; il s'agit d'une base qui se présente de manière naturelle d'après la manière dont l'espace vectoriel est présenté. C'est ainsi que l'on parle de la base canonique de R, de la base canonique de l'espace vectoriel des matrices ou de celui des polynômes. En revanche sur un espace vectoriel quelconque, la notion n'a pas de sens : il n'y a pas de choix de base privilégiée.
Valeur propre, vecteur propre et espace propreEn mathématiques, et plus particulièrement en algèbre linéaire, le concept de vecteur propre est une notion algébrique s'appliquant à une application linéaire d'un espace dans lui-même. Il correspond à l'étude des axes privilégiés, selon lesquels l'application se comporte comme une dilatation, multipliant les vecteurs par une même constante. Ce rapport de dilatation est appelé valeur propre, les vecteurs auxquels il s'applique s'appellent vecteurs propres, réunis en un espace propre.
Matrice modaleEn algèbre linéaire, la matrice modale est utilisée dans le processus de diagonalisation impliquant des valeurs propres et des vecteurs propres. Plus précisément la matrice modale pour la matrice est la matrice n × n formée avec les vecteurs propres de sous forme de colonnes. Elle est utilisée en diagonalisation où est une matrice diagonale n × n avec les valeurs propres de sur la diagonale principale de et des zéros ailleurs. La matrice s'appelle la matrice spectrale pour .
Jordan matrixIn the mathematical discipline of matrix theory, a Jordan matrix, named after Camille Jordan, is a block diagonal matrix over a ring R (whose identities are the zero 0 and one 1), where each block along the diagonal, called a Jordan block, has the following form: Every Jordan block is specified by its dimension n and its eigenvalue , and is denoted as Jλ,n. It is an matrix of zeroes everywhere except for the diagonal, which is filled with and for the superdiagonal, which is composed of ones.
Defective matrixIn linear algebra, a defective matrix is a square matrix that does not have a complete basis of eigenvectors, and is therefore not diagonalizable. In particular, an n × n matrix is defective if and only if it does not have n linearly independent eigenvectors. A complete basis is formed by augmenting the eigenvectors with generalized eigenvectors, which are necessary for solving defective systems of ordinary differential equations and other problems.
Polynôme minimal d'un endomorphismeLe polynôme minimal est un outil qui permet d'utiliser en algèbre linéaire des résultats de la théorie des polynômes. Il est en effet possible d'appliquer un polynôme à un endomorphisme, comme expliqué dans l'article intérêt du concept de polynôme d'endomorphisme. Il est défini comme le polynôme unitaire (son coefficient de plus haut degré est égal à 1) de plus petit degré qui annule un endomorphisme, c'est-à-dire une application linéaire d'un espace vectoriel dans lui-même.
Décomposition d'une matrice en éléments propresEn algèbre linéaire, la décomposition d'une matrice en éléments propres est la factorisation de la matrice en une forme canonique où les coefficients matriciels sont obtenus à partir des valeurs propres et des vecteurs propres. Un vecteur non nul v à N lignes est un vecteur propre d'une matrice carrée A à N lignes et N colonnes si et seulement si il existe un scalaire λ tel que : où λ est appelé valeur propre associée à v. Cette dernière équation est appelée « équation aux valeurs propres ».
Réduction de JordanLa réduction de Jordan est la traduction matricielle de la réduction des endomorphismes introduite par Camille Jordan. Cette réduction est tellement employée, en particulier en analyse pour la résolution d'équations différentielles ou pour déterminer le terme général de certaines suites récurrentes, qu'on la nomme parfois « jordanisation des endomorphismes ». Elle consiste à exprimer la matrice d'un endomorphisme dans une base, dite base de Jordan, où l'expression de l'endomorphisme est réduite.
Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Matrice diagonalisableEn mathématiques, une matrice diagonalisable est une matrice carrée semblable à une matrice diagonale. Cette propriété est équivalente à l'existence d'une base de vecteurs propres, ce qui permet de définir de manière analogue un endomorphisme diagonalisable d'un espace vectoriel. Le fait qu'une matrice soit diagonalisable dépend du corps dans lequel sont cherchées les valeurs propres, ce que confirme la caractérisation par le fait que le polynôme minimal soit scindé à racines simples.