Anneau intègreUn anneau intègre ou anneau d'intégrité est un anneau commutatif unitaire différent de l'anneau nul et qui ne possède aucun diviseur de zéro. Un anneau commutatif unitaire est dit intègre s'il est différent de l'anneau nul (autrement dit : si 1 ≠ 0) et sans diviseur de zéro, c’est-à-dire : En pratique, travailler dans un anneau intègre permet de résoudre des équations produit-nul.
Racine de l'unitévignette|Les racines cinquièmes de l'unité (points bleus) dans le plan complexe. En mathématiques, une racine de l'unité est un nombre complexe dont une puissance entière non nulle vaut 1, c'est-à-dire tel qu'il existe un nombre entier naturel non nul n tel que . Ce nombre est alors appelé racine n-ième de l'unité. Une racine n-ième de l'unité est dite primitive si elle est d'ordre exactement n, c'est-à-dire si n est le plus petit entier strictement positif pour lequel l'égalité est réalisée.
Nombre rationnelUn nombre rationnel est, en mathématiques, un nombre qui peut s'exprimer comme le quotient de deux entiers relatifs. On peut ainsi écrire les nombres rationnels sous forme de fractions notées où , le numérateur, est un entier relatif et , le dénominateur, est un entier relatif non nul. Un nombre entier est un nombre rationnel : il peut s'exprimer sous la forme . Chaque nombre rationnel peut s'écrire d'une infinité de manières différentes sous forme de fraction, par exemple ...
Idéal premierEn algèbre commutative, un idéal premier d'un anneau commutatif unitaire est un idéal tel que le quotient de l'anneau par cet idéal est un anneau intègre. Ce concept généralise la notion de nombre premier à des anneaux à la structure moins simple d'accès que l'anneau des entiers relatifs. Ils jouent un rôle particulièrement important en théorie algébrique des nombres. thumb|Richard Dedekind (1831-1916), formalisateur du concept d'idéal.
IdéalEn mathématiques, et plus particulièrement en algèbre, un idéal est un sous-ensemble remarquable d'un anneau : c'est un sous-groupe du groupe additif de l'anneau qui est, de plus, stable par multiplication par les éléments de l'anneau. À certains égards, les idéaux s'apparentent donc aux sous-espaces vectoriels — qui sont des sous-groupes additifs stables par une multiplication externe ; à d'autres égards, ils se comportent comme les sous-groupes distingués — ce sont des sous-groupes additifs à partir desquels on peut construire une structure d'anneau quotient.
Entier algébriqueEn mathématiques, un entier algébrique est un élément d'un corps de nombres qui y joue un rôle analogue à celui d'un entier relatif dans le corps des nombres rationnels. L'étude des entiers algébriques est à la base de l'arithmétique des corps de nombres, et de la généralisation dans ces corps de notions comme celles de nombre premier ou de division euclidienne. Par définition, un entier algébrique est une racine d'un polynôme unitaire à coefficients dans Z.
Anneau principalvignette|Schéma heuristique des structures algébriques. Les anneaux principaux forment un type d'anneaux commutatifs important dans la théorie mathématique de la divisibilité (voir aussi l'article anneau principal non commutatif). Ce sont des anneaux intègres auxquels on peut étendre deux théorèmes qui, au sens strict, concernent l'anneau des entiers relatifs : le théorème de Bachet-Bézout et le théorème fondamental de l'arithmétique. Un anneau A est dit commutatif lorsque, pour tous éléments a et b de A, .
Anneau des entiersEn algèbre commutative, l'anneau des entiers est une construction que l'on peut obtenir à partir de tout corps de nombres en considérant ses éléments entiers. Par exemple, l'anneau des entiers de est . Il existe des algorithmes efficaces pour calculer cet anneau pour tout corps de nombres. La notion peut en fait être étendue à d'autres objets (notamment les corps de fonctions), et porte une interprétation géométrique. Élément entier Soit K un corps de nombres. Un élément de K est dit entier s'il est racine d'un polynôme unitaire à coefficients dans .
DiviseurLe mot “diviseur” a deux significations en mathématiques. Une division est effectuée à partir d’un “dividende” et d’un “diviseur”, et une fois l’opération terminée, le produit du “quotient” par le diviseur augmenté du “reste” est égal au dividende. En arithmétique, un “diviseur” d'un entier n est un entier dont n est un multiple. Plus formellement, si d et n sont deux entiers, d est un diviseur de n seulement s'il existe un entier k tel que . Ainsi est un diviseur de car .
Nombre irrationnelUn nombre irrationnel est un nombre réel qui n'est pas rationnel, c'est-à-dire qu'il ne peut pas s'écrire sous la forme d'une fraction a/b, où a et b sont deux entiers relatifs (avec b non nul). Les nombres irrationnels peuvent être caractérisés de manière équivalente comme étant les nombres réels dont le développement décimal n'est pas périodique ou dont le développement en fraction continue est infini. On distingue, parmi les nombres irrationnels, deux sous-ensembles complémentaires : les nombres algébriques non rationnels et les nombres transcendants.