Nombre complexe déployéEn mathématiques, les nombres complexes déployés ou fendus forment un anneau commutatif non-intègre, extension des nombres réels définis de manière analogue aux nombres complexes (usuels). La différence-clef entre les deux est que la multiplication des nombres complexes (usuels) respecte la norme euclidienne standard (carrée) : sur alors que la multiplication des nombres complexes déployés, quant à elle, respecte la norme de Minkowski ou norme lorentzienne (carrée) Les nombres complexes déployés ont beaucoup d'autres noms, voir la section des synonymes ci-dessous.
Dual quaternionIn mathematics, the dual quaternions are an 8-dimensional real algebra isomorphic to the tensor product of the quaternions and the dual numbers. Thus, they may be constructed in the same way as the quaternions, except using dual numbers instead of real numbers as coefficients. A dual quaternion can be represented in the form A + εB, where A and B are ordinary quaternions and ε is the dual unit, which satisfies ε2 = 0 and commutes with every element of the algebra. Unlike quaternions, the dual quaternions do not form a division algebra.
Espace-temps (structure algébrique)En physique mathématique, lespace-temps peut-être modélisé par une structure d'algèbre géométrique satisfaisant la géométrie décrite par la relativité restreinte. On parle alors dalgèbre d'espace-temps ou algèbre spatio-temporelle (Space-time algebra en anglais). L'espace-temps contient alors des vecteurs, bivecteurs et autres multivecteurs qui peuvent être combinés les uns aux autres ainsi que transformés selon les transformations de Lorentz ou autres transformations possibles dans une algèbre géométrique (notamment les réflexions).
3D rotation groupIn mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition. By definition, a rotation about the origin is a transformation that preserves the origin, Euclidean distance (so it is an isometry), and orientation (i.e., handedness of space). Composing two rotations results in another rotation, every rotation has a unique inverse rotation, and the identity map satisfies the definition of a rotation.
Quaternions et rotation dans l'espaceLes quaternions unitaires fournissent une notation mathématique commode pour représenter l'orientation et la rotation d'objets en trois dimensions. Comparés aux angles d'Euler, ils sont plus simples à composer et évitent le problème du blocage de cardan. Comparés aux matrices de rotations, ils sont plus stables numériquement et peuvent se révéler plus efficaces. Les quaternions ont été adoptés dans des applications en infographie, robotique, navigation, dynamique moléculaire et en mécanique spatiale des satellites.
Algèbre de quaternionsEn mathématiques, une algèbre de quaternions sur un corps commutatif K est une K-algèbre de dimension 4 qui généralise à la fois le corps des quaternions de Hamilton et l'algèbre des matrices carrées d'ordre 2. Pour être plus précis, ce sont les algèbres centrales simples sur K de degré 2. Dans cet article, on note K un corps commutatif (de caractéristique quelconque). On appelle algèbre de quaternions sur K toute algèbre (unitaire et associative) A de dimension 4 sur K qui est simple (c'est-à-dire que A et {0} sont les seuls idéaux bilatères) et dont le centre est K.
Application projectiveEn mathématiques, une application projective est une application entre deux espaces projectifs qui préserve la structure projective, c'est-à-dire qui envoie les droites, plans, espaces... en des droites, plans, espaces. ➪ Fichier:France homographie (1).gif Une application projective bijective s'appelle une homographie. Rappelons que la définition moderne d'un espace projectif est d'être un ensemble dont les points sont les droites vectorielles d'un -espace vectoriel .
Nombre dualEn mathématiques et en algèbre abstraite, les nombres duaux sont une algèbre associative unitaire commutative à deux dimensions sur les nombres réels, apparaissant à partir des réels par adjonction d'un nouvel élément ε avec la propriété ε = 0 (ε est un élément nilpotent). Ils ont été introduits par William Clifford en 1873. Ils sont notamment utiles pour fournir un outil de dérivation automatique. Ils ont également des applications en physique. Tout nombre dual s'écrit de façon unique sous la forme z = a + bε avec a et b réels.
Modèle de l'hyperboloïdeEn géométrie, le modèle de l'hyperboloïde, également dénommé modèle de Minkowski ou modèle de Lorentz (d'après les noms de Hermann Minkowski et Hendrik Lorentz), est un modèle de géométrie hyperbolique dans un espace de Minkowski de dimension n. Ce modèle d'espace hyperbolique est étroitement lié au modèle de Klein ou au disque de Poincaré. Espace de Minkowski Si x = (x0, x1, ...
SédénionEn mathématiques, les sédénions forment une algèbre réelle de dimension 16, notée . Leur nom provient du latin sedecim qui veut dire seize. Deux sortes sont actuellement connues : les sédénions obtenus par application de la construction de Cayley-Dickson ; les sédénions coniques (ou algèbre M). À l'instar des octonions, la multiplication des sedénions n'est ni commutative ni associative. De plus, par rapport aux octonions, les sédénions perdent la propriété d'être alternatifs.