Fonction totient de JordanEn théorie des nombres, la k-ième fonction totient de Jordan J — nommée d'après le mathématicien Camille Jordan — est la fonction arithmétique qui à tout entier n > 0 associe le nombre de k-uplets d'entiers compris entre 1 et n qui, joints à n, forment un k + 1-uplet de nombres premiers entre eux. C'est une généralisation de la fonction φ d'Euler, qui est J. La fonction J est multiplicative et vaut où le produit est indexé par tous les diviseurs premiers p de n.
Prime omega functionIn number theory, the prime omega functions and count the number of prime factors of a natural number Thereby (little omega) counts each distinct prime factor, whereas the related function (big omega) counts the total number of prime factors of honoring their multiplicity (see arithmetic function). That is, if we have a prime factorization of of the form for distinct primes (), then the respective prime omega functions are given by and . These prime factor counting functions have many important number theoretic relations.
Convolution de DirichletEn mathématiques, la convolution de Dirichlet, encore appelée produit de convolution de Dirichlet ou produit de Dirichlet est une loi de composition interne définie sur l'ensemble des fonctions arithmétiques, c'est-à-dire des fonctions définies sur les entiers strictement positifs et à valeurs dans les nombres complexes. Cette loi de convolution est utilisée en arithmétique, aussi bien algébrique qu'analytique. On la trouve aussi pour résoudre des questions de dénombrement.
Partition function (number theory)In number theory, the partition function p(n) represents the number of possible partitions of a non-negative integer n. For instance, p(4) = 5 because the integer 4 has the five partitions 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 3, 2 + 2, and 4. No closed-form expression for the partition function is known, but it has both asymptotic expansions that accurately approximate it and recurrence relations by which it can be calculated exactly. It grows as an exponential function of the square root of its argument.
Théorème des nombres pentagonauxEn mathématiques, le théorème des nombres pentagonaux, dû au mathématicien suisse Euler, est le théorème qui établit le développement en série formelle de la fonction d'Euler : Autrement dit : Le nom du théorème vient de la forme des exposants dans le membre droit de l'égalité : ces nombres sont les nombres pentagonaux généralisés. Le théorème des nombres pentagonaux est un cas particulier de l'identité du triple produit de Jacobi. Ce théorème a une interprétation combinatoire en termes de partitions.
Formule d'inversion de MöbiusLa formule d'inversion de Möbius classique a été introduite dans la théorie des nombres au cours du par August Ferdinand Möbius. Elle a été généralisée plus tard à d'autres « formules d'inversion de Möbius ». La version classique déclare que pour toutes fonctions arithmétiques f et g, on a si et seulement si f est la transformée de Möbius de g, où μ est la fonction de Möbius et les sommes portent sur tous les diviseurs strictement positifs d de n.
Fonction thêtaEn mathématiques, on appelle fonctions thêta certaines fonctions spéciales d'une ou de plusieurs variables complexes. Elles apparaissent dans plusieurs domaines, comme l'étude des variétés abéliennes, des espaces de modules, et les formes quadratiques. Elles ont aussi des applications à la théorie des solitons. Leurs généralisations en algèbre extérieure apparaissent dans la théorie quantique des champs, plus précisément dans la théorie des cordes et des D-branes.
Indicatrice d'Eulervignette|upright=1.5|Les mille premières valeurs de φ(n). En mathématiques, l'indicatrice d'Euler est une fonction arithmétique de la théorie des nombres, qui à tout entier naturel n non nul associe le nombre d'entiers compris entre 1 et n (inclus) et premiers avec n. Elle intervient en mathématiques pures, à la fois en théorie des groupes, en théorie algébrique des nombres et en théorie analytique des nombres. En mathématiques appliquées, à travers l'arithmétique modulaire, elle joue un rôle important en théorie de l'information et plus particulièrement en cryptologie.
Fonction arithmétiqueEn théorie des nombres, une fonction arithmétique f est une application définie sur l'ensemble des entiers strictement positifs et à valeurs dans l'ensemble des nombres complexes. En d'autres termes, une fonction arithmétique n'est rien d'autre qu'une suite de nombres complexes, indexée par N*. Les fonctions arithmétiques les plus étudiées sont les fonctions additives et les fonctions multiplicatives. Une opération importante sur les fonctions arithmétiques est le produit de convolution de Dirichlet.
Fonction somme des puissances k-ièmes des diviseursEn mathématiques, la fonction "somme des puissances k-ièmes des diviseurs", notée , est la fonction multiplicative qui à tout entier n > 0 associe la somme des puissances -ièmes des diviseurs positifs de n, où est un nombre complexe quelconque : La fonction est multiplicative, c'est-à-dire que, pour tous entiers et n premiers entre eux, . En effet, est le produit de convolution de deux fonctions multiplicatives : la fonction puissance -ième et la fonction constante 1.