Quadrilatère orthodiagonalvignette|Exemples de quadrilatères orthodiagonaux non convexes. En géométrie euclidienne, un quadrilatère orthodiagonal est un quadrilatère dont les diagonales se coupent à angle droit. Autrement dit, il s'agit d'un polygone à quatre côtés dont les segments entre sommets non adjacents sont perpendiculaires. centré|vignette|400x400px|Exemples de quadrilatères orthodiagonaux convexes. Un cerf-volant est un quadrilatère orthodiagonal dont l'une des diagonales est axe de symétrie.
Symétrie centralethumb|upright=0.7|Symétrie centrale plane dans une carte à jouer : sur la carte figure le roi de cœur et son symétrique par rapport au centre de cette dernière. En géométrie, une symétrie centrale est une transformation d'un espace affine. Elle se réalise à partir d'un point fixe noté Ω appelé centre de symétrie. Elle transforme tout point M en un point M' tel que le point Ω soit le milieu du segment [MM']. En termes de vecteurs, cela se traduit par : Comme toute symétrie, c'est une involution, c'est-à-dire qu'on retrouve le point ou la figure de départ si on l'applique deux fois.
Mathematical objectA mathematical object is an abstract concept arising in mathematics. In the usual language of mathematics, an object is anything that has been (or could be) formally defined, and with which one may do deductive reasoning and mathematical proofs. Typically, a mathematical object can be a value that can be assigned to a variable, and therefore can be involved in formulas. Commonly encountered mathematical objects include numbers, sets, functions, expressions, geometric objects, transformations of other mathematical objects, and spaces.
PentagoneEn géométrie, un pentagone est un polygone à cinq sommets, donc cinq côtés et cinq diagonales. Un pentagone est soit simple (convexe ou concave), soit croisé. Le pentagone régulier étoilé est le pentagramme. Le terme « pentagone » dérive du latin pentagonum de même sens, substantivation de l'adjectif pentagonus, lui-même emprunté au grec ancien, πεντάγωνος (pentágônos), « pentagonal », « qui a cinq angles, cinq côtés ». Le terme grec est lui-même construit à partir de πέντε (pénte), « cinq », et γωνία (gônía), « angle ».
Reflection groupIn group theory and geometry, a reflection group is a discrete group which is generated by a set of reflections of a finite-dimensional Euclidean space. The symmetry group of a regular polytope or of a tiling of the Euclidean space by congruent copies of a regular polytope is necessarily a reflection group. Reflection groups also include Weyl groups and crystallographic Coxeter groups. While the orthogonal group is generated by reflections (by the Cartan–Dieudonné theorem), it is a continuous group (indeed, Lie group), not a discrete group, and is generally considered separately.
Icosahedral symmetryIn mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual of the icosahedron) and the rhombic triacontahedron. Every polyhedron with icosahedral symmetry has 60 rotational (or orientation-preserving) symmetries and 60 orientation-reversing symmetries (that combine a rotation and a reflection), for a total symmetry order of 120.
CarréEn géométrie euclidienne, un carré est un quadrilatère convexe à quatre côtés de même longueur avec quatre angles droits. C’est donc un polygone régulier, qui est à la fois un losange, un rectangle, et par conséquent aussi un parallélogramme particulier. Dans le plan, un carré est invariant par quatre symétries axiales, par deux rotations d’angle droit et par une symétrie centrale par rapport à l’intersection de ses diagonales. Les premières représentations du carré datent de la préhistoire.
Symétrie de rotationEn physique, la symétrie de rotation, ou invariance par rotation, est la propriété d'une théorie, ou d'un système physique de ne pas être modifié soit par une rotation spatiale quelconque, ou alors par seulement certaines d'entre elles. Lorsque le système est invariant par n'importe quelle rotation d'espace, on parle d'isotropie (du Grec isos (ἴσος, "égal, identique") et tropos (τρόπος, "tour, direction"). Dans ce cas toutes les directions de l'espace sont équivalentes.
Trois dimensionsTrois dimensions, tridimensionnel ou 3D sont des expressions qui caractérisent l'espace qui nous entoure, tel que perçu par notre vision, en ce qui concerne la largeur, la hauteur et la profondeur. Le terme « 3D » est également (et improprement) utilisé (surtout en anglais) pour désigner la représentation en (numérique), le relief des images stéréoscopiques ou autres , et même parfois le simple effet stéréophonique, qui ne peut par construction rendre que de la 2D (il ne s'agit donc que du calcul des projections perspectives, des ombrages, des rendus de matières).
Isosceles trapezoidIn Euclidean geometry, an isosceles trapezoid (isosceles trapezium in British English) is a convex quadrilateral with a line of symmetry bisecting one pair of opposite sides. It is a special case of a trapezoid. Alternatively, it can be defined as a trapezoid in which both legs and both base angles are of equal measure, or as a trapezoid whose diagonals have equal length. Note that a non-rectangular parallelogram is not an isosceles trapezoid because of the second condition, or because it has no line of symmetry.