Règle du parallélogrammevignette vignette|Les vecteurs x + y et x – y forment les diagonales du parallélogramme de côtés x et y. En mathématiques, la forme la plus simple de la règle du parallélogramme (ou identité du parallélogramme, ou encore égalité du parallélogramme) est celle de géométrie élémentaire. Elle dit que la somme des carrés des longueurs des quatre côtés d'un parallélogramme est égale à la somme des carrés des longueurs de ses deux diagonales : ou encore, puisque deux côtés opposés ont même longueur : (Dans le cas où le parallélogramme est un rectangle, les diagonales sont de longueurs égales, ce qui ramène cette règle au théorème de Pythagore.
Orientation (vector space)The orientation of a real vector space or simply orientation of a vector space is the arbitrary choice of which ordered bases are "positively" oriented and which are "negatively" oriented. In the three-dimensional Euclidean space, right-handed bases are typically declared to be positively oriented, but the choice is arbitrary, as they may also be assigned a negative orientation. A vector space with an orientation selected is called an oriented vector space, while one not having an orientation selected, is called .
Fonction de plusieurs variables complexesLa théorie des fonctions de plusieurs variables complexes est une branche des mathématiques traitant des fonctions à variables complexes. On définit de cette manière une fonction de Cn dans C, dont on peut noter les variables . L'analyse complexe correspond au cas . H. Cartan: Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes. Hermann, Paris, 1961. C. Laurent-Thiébaut : Théorie des fonctions holomorphes de plusieurs variables. EDP Sciences, 1997. V.S.
Complex polytopeIn geometry, a complex polytope is a generalization of a polytope in real space to an analogous structure in a complex Hilbert space, where each real dimension is accompanied by an imaginary one. A complex polytope may be understood as a collection of complex points, lines, planes, and so on, where every point is the junction of multiple lines, every line of multiple planes, and so on. Precise definitions exist only for the regular complex polytopes, which are configurations.
Nombre complexe déployéEn mathématiques, les nombres complexes déployés ou fendus forment un anneau commutatif non-intègre, extension des nombres réels définis de manière analogue aux nombres complexes (usuels). La différence-clef entre les deux est que la multiplication des nombres complexes (usuels) respecte la norme euclidienne standard (carrée) : sur alors que la multiplication des nombres complexes déployés, quant à elle, respecte la norme de Minkowski ou norme lorentzienne (carrée) Les nombres complexes déployés ont beaucoup d'autres noms, voir la section des synonymes ci-dessous.
Real projective spaceIn mathematics, real projective space, denoted \mathbb{RP}^n or \mathbb{P}_n(\R), is the topological space of lines passing through the origin 0 in the real space \R^{n+1}. It is a compact, smooth manifold of dimension n, and is a special case \mathbf{Gr}(1, \R^{n+1}) of a Grassmannian space. As with all projective spaces, RPn is formed by taking the quotient of Rn+1 ∖ under the equivalence relation x ∼ λx for all real numbers λ ≠ 0. For all x in Rn+1 ∖ one can always find a λ such that λx has norm 1.
Dimension de HausdorffEn mathématiques, et plus précisément en topologie, la dimension de Hausdorff d'un espace métrique (X,d) est un nombre réel positif ou nul, éventuellement l'infini. Introduite en 1918 par le mathématicien Felix Hausdorff, elle a été développée par Abram Besicovitch, c'est pourquoi elle est parfois appelée dimension de Hausdorff-Besicovitch. L'exemple le plus simple est l'espace euclidien de dimension (au sens des espaces vectoriels) égale à n (ou plus généralement un espace vectoriel réel de dimension n muni d'une distance associée à une norme) : sa dimension de Hausdorff d est aussi égale à n, dimension de l'espace vectoriel.
Fonction convexevignette|upright=1.5|droite|Fonction convexe. En mathématiques, une fonction réelle d'une variable réelle est dite convexe : si quels que soient deux points et du graphe de la fonction, le segment est entièrement situé au-dessus du graphe, c’est-à-dire que la courbe représentative de la fonction se situe toujours en dessous de ses cordes ; ou si l'épigraphe de la fonction (l'ensemble des points qui sont au-dessus de son graphe) est un ensemble convexe ; ou si vu d'en dessous, le graphe de la fonction est en bosse.
Réseau (géométrie)En mathématiques, un réseau d'un espace (vectoriel) euclidien est un sous-groupe discret de l’espace, de rang fini n. Par exemple, les vecteurs de Rn à coordonnées entières dans une base forment un réseau de Rn. Cette notion permet de décrire mathématiquement des maillages, comme celui correspondant à la figure 1. thumb|Fig. 1. Un réseau est un ensemble discret disposé dans un espace vectoriel réel de dimension finie de manière régulière, au sens où la différence de deux éléments du réseau est encore élément du réseau.
Fonction homogènevignette|Exemple de fonction homogène de degré 1 En mathématiques, une fonction homogène est une fonction qui a un comportement d’échelle multiplicatif par rapport à son ou ses arguments : si l'argument (vectoriel au besoin) est multiplié par un scalaire, alors le résultat sera multiplié par ce scalaire porté à une certaine puissance. Soient E et F deux espaces vectoriels sur un même corps commutatif K.