Cantor's first set theory articleCantor's first set theory article contains Georg Cantor's first theorems of transfinite set theory, which studies infinite sets and their properties. One of these theorems is his "revolutionary discovery" that the set of all real numbers is uncountably, rather than countably, infinite. This theorem is proved using Cantor's first uncountability proof, which differs from the more familiar proof using his diagonal argument.
Espace de CantorEn mathématiques, plus précisément en topologie, on appelle espace de Cantor l'espace produit , où est muni de la topologie discrète. C'est un espace compact métrisable à base dénombrable (en fait, pour un espace compact, être métrisable ou être à base dénombrable sont des propriétés équivalentes) et totalement discontinu, qui a la propriété suivante : Tout espace métrisable à base dénombrable totalement discontinu est homéomorphe à un sous-espace de K.
Tribu boréliennevignette|Normal distribution pdf. En mathématiques, la tribu borélienne (également appelée tribu de Borel ou tribu des boréliens) sur un espace topologique est la plus petite tribu sur contenant tous les ensembles ouverts. Les éléments de la tribu borélienne sont appelés des boréliens. Le concept doit son nom à Émile Borel, qui a publié en 1898 une première exposition de la tribu borélienne de la droite réelle. La tribu borélienne peut, de manière équivalente, se définir comme la plus petite tribu qui contient tous les sous-ensembles fermés de .
Nombre transfinivignette|Le mathématicien George Cantor (1918). Les nombres transfinis sont des nombres exposés et étudiés par le mathématicien Georg Cantor. Se fondant sur ses résultats, il a introduit une sorte de hiérarchie dans l'infini, en développant la théorie des ensembles. Un nombre entier naturel peut être utilisé pour décrire la taille d'un ensemble fini, ou pour désigner la position d'un élément dans une suite. Ces deux utilisations correspondent aux notions de cardinal et d'ordinal respectivement.
Argument de la diagonale de Cantorvignette|Illustration de la diagonale de Cantor En mathématiques, l'argument de la diagonale, ou argument diagonal, fut inventé par le mathématicien allemand Georg Cantor et publié en 1891. Il permit à ce dernier de donner une deuxième démonstration de la non-dénombrabilité de l'ensemble des nombres réels, beaucoup plus simple, selon Cantor lui-même, que la première qu'il avait publiée en 1874, et qui utilisait des arguments d'analyse, en particulier le théorème des segments emboîtés.
Hypothèse du continuEn théorie des ensembles, l'hypothèse du continu (HC), due à Georg Cantor, affirme qu'il n'existe aucun ensemble dont le cardinal est strictement compris entre le cardinal de l'ensemble des entiers naturels et celui de l'ensemble des nombres réels. En d'autres termes : tout ensemble strictement plus grand, au sens de la cardinalité, que l'ensemble des entiers naturels doit contenir une « copie » de l'ensemble des nombres réels.
Axiome de déterminationL'axiome de détermination est un axiome alternatif de la théorie des ensembles affirmant que certains jeux (au sens de la théorie des jeux) infinis sont déterminés. Cet axiome n'est pas compatible avec l'axiome du choix mais implique l'axiome du choix dénombrable pour les familles d'ensembles de réels et implique également une forme faible de l'hypothèse du continu.
Ensemble infini non dénombrableUn ensemble infini non dénombrable est un ensemble qui est « trop gros » pour être dénombrable. De manière précise, c'est un ensemble infini qui ne peut être mis en bijection avec les entiers naturels. En présence de l'axiome du choix, cela signifie que son cardinal est strictement supérieur au cardinal du dénombrable. On dit souvent simplement ensemble non dénombrable. L'ensemble des nombres réels en est un exemple. Avec l'hypothèse généralisée du continu, un ensemble des cardinalités infinies non dénombr
Récurrence transfinieEn mathématiques, on parle de récurrence transfinie ou de récursion transfinie pour deux principes reliés mais distincts. Les définitions par récursion transfinie — permettent de construire des objets infinis, et généralisent les définitions de suite par récurrence sur l'ensemble N des entiers naturels en considérant des familles indexées par un ordinal infini quelconque, au lieu de se borner au plus petit d'entre eux qu'est N, appelé ω en tant que nombre ordinal.