S'insère dans la dualité entre les intervalles de confiance et les tests d'hypothèses, soulignant l'importance de la précision et de l'exactitude dans l'estimation.
Couvre la méthode des moments pour estimer les paramètres et construire des intervalles de confiance basés sur des moments empiriques correspondant à des moments de distribution.
Explorer les tests d'hypothèses à l'aide du théorème de Wilks, les statistiques du rapport de probabilité, les valeurs p, l'estimation des intervalles et les régions de confiance.
Il explore la construction de régions de confiance, les tests d'hypothèse inversés et la méthode pivot, en soulignant l'importance des méthodes de probabilité dans l'inférence statistique.
Explore la théorie de la distribution des estimateurs des moindres carrés dans un modèle linéaire gaussien, en mettant l'accent sur la construction des intervalles de précision et de confiance.