Opérateur elliptiqueEn mathématiques, un opérateur elliptique est un opérateur différentiel qui généralise l'opérateur laplacien. Les opérateurs elliptiques sont définis via la condition que les coefficients devant les termes de dérivation de plus haut degré soient positifs, ce qui est équivalent au fait qu'il n'y a pas de caractéristique réelle. Les opérateurs elliptiques jouent un rôle crucial en théorie du potentiel et apparaissent fréquemment en électrostatique et en mécanique des milieux continus.
Noyau de la chaleurEn mathématiques, le noyau de la chaleur est une fonction de Green (également appelée solution élémentaire) de l'équation de la chaleur sur un domaine spécifié, avec éventuellement des conditions aux limites appropriées. C'est aussi un des outils principaux de l'étude du spectre du laplacien. Le noyau de la chaleur représente l'évolution de la température égale à une unité de chaleur en un point au temps initial.
Théorie spectraleEn mathématiques, et plus particulièrement en analyse, une théorie spectrale est une théorie étendant à des opérateurs définis sur des espaces fonctionnels généraux la théorie élémentaire des valeurs propres et des vecteurs propres de matrices. Bien que ces idées viennent au départ du développement de l'algèbre linéaire, elles sont également liées à l'étude des fonctions analytiques, parce que les propriétés spectrales d'un opérateur sont liées à celles de fonctions analytiques sur les valeurs de son spectre.
Équation de diffusionLéquation de diffusion est une équation aux dérivées partielles. En physique, elle décrit le comportement du déplacement collectif de particules (molécules, atomes, photons. neutrons, etc.) ou de quasi-particules comme les phonons dans un milieu causé par le mouvement aléatoire de chaque particule lorsque les échelles de temps et d'espace macroscopiques sont grandes devant leurs homologues microscopiques. Dans le cas contraire le problème est décrit par l'équation de Boltzmann.
Molecular diffusionMolecular diffusion, often simply called diffusion, is the thermal motion of all (liquid or gas) particles at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid and the size (mass) of the particles. Diffusion explains the net flux of molecules from a region of higher concentration to one of lower concentration. Once the concentrations are equal the molecules continue to move, but since there is no concentration gradient the process of molecular diffusion has ceased and is instead governed by the process of self-diffusion, originating from the random motion of the molecules.
Joseph FourierJean Baptiste Joseph Fourier est un mathématicien et physicien français né le à Auxerre et mort le à Paris. Joseph Fourier est connu pour avoir déterminé, par le calcul, la diffusion de la chaleur en utilisant la décomposition d'une fonction périodique en une série trigonométrique, qui sous certaines conditions, converge vers la fonction. Ces séries sont utilisées dans la résolution des équations aux dérivées partielles. Veuf en 1757, son père, qui avait déjà trois enfants, se remarie deux ans plus tard avec Edmée Germaine Lebègue.
Programme de HamiltonLe programme de Hamilton est un « plan d'attaque », proposé par Richard S. Hamilton, de certains problèmes en topologie des variétés, notamment la célèbre conjecture de Poincaré. Cet article tente de décrire les raisons d'être de ce programme sans entrer dans les détails. Dans son article fondateur de 1982, Three-manifolds with positive Ricci curvature, Richard S. Hamilton introduit le flot de Ricci nommé d'après le mathématicien Gregorio Ricci-Curbastro.
Séparation des variablesEn mathématiques, la séparation des variables constitue l'une des méthodes de résolution des équations différentielles partielles et ordinaires, lorsque l'algèbre permet de réécrire l'équation de sorte que chacune des deux variables apparaisse dans un membre distinct de l'équation. Supposons qu'une équation différentielle puisse être écrite de la forme suivante et pour tout x : que l'on peut écrire plus simplement en identifiant : Tant que h(y) ≠ 0, on peut réécrire les termes de l'équation pour obtenir : séparant donc les variables x et y.
Polynôme d'HermiteEn mathématiques, les polynômes d'Hermite sont une suite de polynômes qui a été nommée ainsi en l'honneur de Charles Hermite (bien qu'ils aient été définis, sous une autre forme, en premier par Pierre-Simon Laplace en 1810, surtout été étudiés par Joseph-Louis Lagrange lors de ses travaux sur les probabilités puis en détail par Pafnouti Tchebychev six ans avant Hermite). Ils sont parfois décrits comme des polynômes osculateurs.
Problème de DirichletEn mathématiques, le problème de Dirichlet est de trouver une fonction harmonique définie sur un ouvert de prolongeant une fonction continue définie sur la frontière de l'ouvert . Ce problème porte le nom du mathématicien allemand Johann Peter Gustav Lejeune Dirichlet. Il n'existe pas toujours de solution au problème de Dirichlet. Dans cette partie, , où est le disque de centre 0 et de rayon 1. Il existe alors une solution au problème de Dirichlet, définie ci-dessous. On a toujours continue sur . On pose : .