Variété abélienneEn mathématiques, et en particulier, en géométrie algébrique et géométrie complexe, une variété abélienne A est une variété algébrique projective qui est un groupe algébrique. La condition de est l'équivalent de la compacité pour les variétés différentielles ou analytiques, et donne une certaine rigidité à la structure. C'est un objet central en géométrie arithmétique. Une variété abélienne sur un corps k est un groupe algébrique A sur k, dont la variété algébrique sous-jacente est projective, connexe et géométriquement réduite.
Courbe elliptiqueEn mathématiques, une courbe elliptique est un cas particulier de courbe algébrique, munie entre autres propriétés d'une addition géométrique sur ses points. Les courbes elliptiques ont de nombreuses applications dans des domaines très différents des mathématiques : elles interviennent ainsi en mécanique classique dans la description du mouvement des toupies, en théorie des nombres dans la démonstration du dernier théorème de Fermat, en cryptologie dans le problème de la factorisation des entiers ou pour fabriquer des codes performants.
Compactification (mathématiques)vignette|Exemple de compactification En topologie, la compactification est un procédé général de plongement d'un espace topologique comme sous-espace dense d'un espace compact. Le plongement est appelé le compactifié. Un tel plongement existe si et seulement si l'espace est complètement régulier.
Function field of an algebraic varietyIn algebraic geometry, the function field of an algebraic variety V consists of objects which are interpreted as rational functions on V. In classical algebraic geometry they are ratios of polynomials; in complex algebraic geometry these are meromorphic functions and their higher-dimensional analogues; in modern algebraic geometry they are elements of some quotient ring's field of fractions. In complex algebraic geometry the objects of study are complex analytic varieties, on which we have a local notion of complex analysis, through which we may define meromorphic functions.
Bouteille de KleinEn mathématiques, la 'bouteille de Klein' (prononcé ) est une surface fermée, sans bord et non orientable, c'est-à-dire une surface pour laquelle il n'est pas possible de définir un « intérieur » et un « extérieur ». La bouteille de Klein a été décrite pour la première fois en 1882 par le mathématicien allemand Felix Klein. Son nom provient possiblement d’une confusion ou d’un jeu de mots entre les termes Klein Fläche (« surface de Klein ») et Klein Flasche (« bouteille de Klein »).
Ramification (mathématiques)En mathématiques, la ramification est un terme géométrique utilisé au sens de embranchement extérieur, à la façon dont la fonction racine carrée, pour les nombres complexes, peut être vue lorsqu'on considère ses deux branches opposées. Il est aussi utilisé d'une perspective opposée (branches arrivant ensemble) comme lorsqu'un revêtement dégénère en un point de la base, avec effondrement en ce point des fibres de l'application. point de branchement En analyse complexe, le modèle de base peut être pris comme l'application dans le plan complexe, proche de z = 0.
DifféotopieEn mathématiques, une difféotopie est une classe d'équivalence pour la relation d’isotopie entre difféomorphismes sur une variété différentielle. Plus explicitement, étant donnés deux difféomorphismes sur une telle variété M, c’est-à-dire deux applications φ, φ : M → M différentiables et bijectives avec des réciproques différentiables, on dit que ces difféomorphismes sont isotopes s’il existe une famille de difféomorphismes φ pour t ∈ ]0, 1[ telle que Φ : (t, x) ↦ φ(x) définisse une application différentiable sur [0, 1] × M.
Algebraic geometry and analytic geometryIn mathematics, algebraic geometry and analytic geometry are two closely related subjects. While algebraic geometry studies algebraic varieties, analytic geometry deals with complex manifolds and the more general analytic spaces defined locally by the vanishing of analytic functions of several complex variables. The deep relation between these subjects has numerous applications in which algebraic techniques are applied to analytic spaces and analytic techniques to algebraic varieties.
Hurwitz's automorphisms theoremIn mathematics, Hurwitz's automorphisms theorem bounds the order of the group of automorphisms, via orientation-preserving conformal mappings, of a compact Riemann surface of genus g > 1, stating that the number of such automorphisms cannot exceed 84(g − 1). A group for which the maximum is achieved is called a Hurwitz group, and the corresponding Riemann surface a Hurwitz surface. Because compact Riemann surfaces are synonymous with non-singular complex projective algebraic curves, a Hurwitz surface can also be called a Hurwitz curve.
Surface de BolzaEn mathématiques, la surface de Bolza (du nom d'Oskar Bolza) est une surface de Riemann compacte de genre 2. Elle a le groupe d'automorphismes conformes d'ordre le plus élevé possible parmi les surfaces de Riemann de genre 2, à savoir le groupe O de l'octaèdre, d'ordre 48. La surface de Bolza est la surface de Riemann associée à la courbe algébrique plane d'équation dans . Parmi toutes les surfaces hyperboliques de genre 2, la surface de Bolza possède la plus longue systole. M. Katz et S.