Polynôme minimal (théorie des corps)thumb|Carl Friedrich Gauss utilise des polynômes minimaux appelés cyclotomiques pour déterminer les polygones constructibles à la règle et au compas. En théorie des corps, le polynôme minimal sur un corps commutatif K d'un élément algébrique d'une extension de K, est le polynôme unitaire de degré minimal parmi les polynômes à coefficients dans le corps de base K qui annulent l'élément. Il divise tous ces polynômes. C'est toujours un polynôme irréductible.
Casus irreducibilisEn algèbre, le casus irreducibilis (latin pour « cas irréductible ») désigne un cas apparaissant lors de la recherche des racines réelles d'un polynôme à coefficients entiers de degré 3 ou plus : c'est celui où les racines ne peuvent s'exprimer à l'aide de radicaux réels. Le casus irreducibilis le plus connu est celui des polynômes de degré 3 irréductibles dans les rationnels (impossibles à factoriser en polynômes de degré moindre) ayant trois racines réelles, cas qui a été prouvé par Pierre Wantzel en 1843.
Extension cyclotomiqueEn théorie algébrique des nombres, on appelle extension cyclotomique du corps Q des nombres rationnels tout corps de rupture d'un polynôme cyclotomique, c'est-à-dire tout corps de la forme Q(ζ) où ζ est une racine de l'unité. Ces corps jouent un rôle crucial, d'une part dans la compréhension de certaines équations diophantiennes : par exemple, l'arithmétique (groupe des classes, notamment) de leur anneau des entiers permet de montrer le dernier théorème de Fermat dans de nombreux cas (voir nombre premier régulier) ; mais aussi, dans la compréhension des extensions algébriques de Q, ce qui peut être considéré comme une version abstraite du problème précédent : le théorème de Kronecker-Weber, par exemple, assure que toute extension abélienne est contenue dans une extension cyclotomique.
Algèbre généraleL'algèbre générale, ou algèbre abstraite, est la branche des mathématiques qui porte principalement sur l'étude des structures algébriques et de leurs relations. L'appellation algèbre générale s'oppose à celle d'algèbre élémentaire ; cette dernière enseigne le calcul algébrique, c'est-à-dire les règles de manipulation des formules et des expressions algébriques. Historiquement, les structures algébriques sont apparues dans différents domaines des mathématiques, et n'y ont pas été étudiées séparément.
Degree of a field extensionIn mathematics, more specifically field theory, the degree of a field extension is a rough measure of the "size" of the field extension. The concept plays an important role in many parts of mathematics, including algebra and number theory — indeed in any area where fields appear prominently. Suppose that E/F is a field extension. Then E may be considered as a vector space over F (the field of scalars). The dimension of this vector space is called the degree of the field extension, and it is denoted by [E:F].
Extension de corpsEn mathématiques, plus particulièrement en algèbre, une extension d'un corps commutatif K est un corps L qui contient K comme sous-corps. Par exemple, le corps C des nombres complexes est une extension du corps R des nombres réels, lequel est lui-même une extension du corps Q des nombres rationnels. On note parfois L/K pour indiquer que L est une extension de K. Soit K un corps. Une extension de K est un couple (L, j) où L est un corps et j un morphisme de corps de K dans L (les morphismes de corps étant systématiquement injectifs).
Décomposition des idéaux premiers dans les extensions galoisiennesEn mathématiques, l'interaction entre le groupe de Galois G d'une extension galoisienne de corps de nombres L/K (ou de corps de nombres p-adiques, ou de corps de fonctions), et la manière dont les idéaux premiers de l'anneau O des entiers se décomposent sous forme de produits d'idéaux premiers de O, est à la base de nombreux développements fructueux en théorie algébrique des nombres. Le cas d'une extension non nécessairement galoisienne est traitée dans l'article « Décomposition des idéaux premiers ».
Tensor product of fieldsIn mathematics, the tensor product of two fields is their tensor product as algebras over a common subfield. If no subfield is explicitly specified, the two fields must have the same characteristic and the common subfield is their prime subfield. The tensor product of two fields is sometimes a field, and often a direct product of fields; In some cases, it can contain non-zero nilpotent elements. The tensor product of two fields expresses in a single structure the different way to embed the two fields in a common extension field.
Glossary of field theoryField theory is the branch of mathematics in which fields are studied. This is a glossary of some terms of the subject. (See field theory (physics) for the unrelated field theories in physics.) A field is a commutative ring (F,+,*) in which 0≠1 and every nonzero element has a multiplicative inverse. In a field we thus can perform the operations addition, subtraction, multiplication, and division. The non-zero elements of a field F form an abelian group under multiplication; this group is typically denoted by F×; The ring of polynomials in the variable x with coefficients in F is denoted by F[x].