Théorème des valeurs intermédiairesvignette|Illustration du théorème des valeurs intermédiaires : si f est une fonction continue sur l'intervalle [a ; b], alors elle prend toutes les valeurs comprises entre f(a) et f(b) au moins une fois. Ici la valeur s est prise trois fois. En mathématiques, le théorème des valeurs intermédiaires (abrégé en TVI), parfois appelé théorème de Bolzano, est un résultat important en analyse et concerne des fonctions continues sur un intervalle.
Recherche dichotomiqueLa recherche dichotomique, ou recherche par dichotomie (), est un algorithme de recherche pour trouver la position d'un élément dans un tableau trié. Le principe est le suivant : comparer l'élément avec la valeur de la case au milieu du tableau ; si les valeurs sont égales, la tâche est accomplie, sinon on recommence dans la moitié du tableau pertinente. Le nombre d'itérations de la procédure, c'est-à-dire le nombre de comparaisons, est logarithmique en la taille du tableau.
Fonction gammaEn mathématiques, la fonction gamma (notée par Γ la lettre grecque majuscule gamma de l'alphabet grec) est une fonction utilisée communément, qui prolonge de la fonction factorielle à l'ensemble des nombres complexes. En ce sens, il s'agit une fonction complexe. Elle est considérée également comme une fonction spéciale. La fonction gamma est défini pour tous les nombres complexes, à l'exception des entiers négatifs. On a pour tout entier strictement positif, où est la factorielle de , c'est-à-dire le produit des entiers entre 1 et : .
Fonction élémentaireEn mathématiques, une fonction élémentaire est une fonction d'une variable construite à partir d'un nombre fini d'exponentielles, logarithmes, constantes, et racines n-ièmes par composition et combinaisons utilisant les quatre opérations élémentaires (+ – × ÷). En permettant à ces fonctions (et les constantes) d'être complexes, les fonctions trigonométriques et leurs réciproques sont élémentaires. Les fonctions élémentaires ont été d'abord introduites par Joseph Liouville dans une série de publications de 1833 à 1841.
Analyse de la complexité des algorithmesvignette|Représentation d'une recherche linéaire (en violet) face à une recherche binaire (en vert). La complexité algorithmique de la seconde est logarithmique alors que celle de la première est linéaire. L'analyse de la complexité d'un algorithme consiste en l'étude formelle de la quantité de ressources (par exemple de temps ou d'espace) nécessaire à l'exécution de cet algorithme. Celle-ci ne doit pas être confondue avec la théorie de la complexité, qui elle étudie la difficulté intrinsèque des problèmes, et ne se focalise pas sur un algorithme en particulier.
Logarithme binaireEn mathématiques, le logarithme binaire (log2 n) est le logarithme de base 2. C’est la fonction réciproque de la fonction puissance de deux : x ↦ 2x. Le logarithme binaire de x est la puissance à laquelle le nombre 2 doit être élevé pour obtenir la valeur x, soit : . Ainsi, le logarithme binaire de 1 est 0, le logarithme binaire de 2 est 1, le logarithme binaire de 4 est 2, le logarithme binaire de 8 est 3. On le ld () (pour logarithmus dualis), mais la norme ISO 80000-2 indique que log2(x) devrait être symbolisé par lb (x).
PrimitiveEn mathématiques, une primitive d’une fonction réelle (ou holomorphe) f est une fonction F dont f est la dérivée : Il s’agit donc d’un antécédent pour l’opération de dérivation. La détermination d’une primitive sert d’abord au calcul des intégrales de fonctions continues sur un segment, en application du théorème fondamental de l'analyse.
AsymptoteLe terme d'asymptote (prononciation : ) est utilisé en mathématiques pour préciser des propriétés éventuelles d'une branche infinie de courbe à accroissement tendant vers l'infinitésimal. C'est d'abord un adjectif d'étymologie grecque qui peut qualifier une droite, un cercle, un point... dont une courbe plus complexe peut se rapprocher. C'est aussi devenu un nom féminin synonyme de droite asymptote. Une droite asymptote à une courbe est une droite telle que, lorsque l'abscisse ou l'ordonnée tend vers l'infini, la distance de la courbe à la droite tend vers 0.
Logarithme décimalthumb|upright=2|Représentation graphique du logarithme décimal dans un repère orthogonal Le logarithme décimal ou log ou simplement log (parfois appelé logarithme vulgaire) est le logarithme de base dix. Il est défini pour tout réel strictement positif x. Le logarithme décimal est la fonction continue qui transforme un produit en somme et qui vaut 1 en 10. Le logarithme décimal est la fonction réciproque de la fonction : La norme ISO 80000-2 indique que log devrait être noté lg, mais cette notation est rarement utilisée.
Bijection réciproqueEn mathématiques, la bijection réciproque (ou fonction réciproque ou réciproque) d'une bijection est l'application qui associe à chaque élément de l'ensemble d'arrivée son unique antécédent par . Elle se note . On considère l'application de vers définie par . Pour chaque réel y, il y a un et un seul réel x tel que , ainsi pour = 8, le seul convenable est 2, en revanche, pour = –27 c'est –3. En termes mathématiques, on dit que est l'unique antécédent de et que est une bijection.