Échelle logarithmiqueUne échelle logarithmique est un système de graduation en progression géométrique. Chaque pas multiplie la valeur par une constante positive. De ce fait, la position sur l'axe d'une valeur est proportionnelle à son logarithme. Une échelle logarithmique est particulièrement adaptée pour rendre compte des ordres de grandeur dans les applications. Elle montre sur un petit espace une large gamme de valeurs, à condition qu'elles soient non nulles et de même signe.
DécibelLe décibel, de symbole dB, est une unité définie comme dix fois le logarithme décimal du rapport entre deux puissances, utilisée dans les télécommunications, l'électronique et l'acoustique. Dans le domaine de l'acoustique environnementale, on exprime couramment le niveau sonore en décibels. Cette valeur indique implicitement le rapport des puissances entre la grandeur mesurée et la valeur de référence qui correspond à un son trop faible pour être entendu. Le décibel est un sous-multiple du bel, jamais employé.
Entropie de ShannonEn théorie de l'information, l'entropie de Shannon, ou plus simplement entropie, est une fonction mathématique qui, intuitivement, correspond à la quantité d'information contenue ou délivrée par une source d'information. Cette source peut être un texte écrit dans une langue donnée, un signal électrique ou encore un fichier informatique quelconque (suite d'octets). Elle a été introduite par Claude Shannon. Du point de vue d'un récepteur, plus la source émet d'informations différentes, plus l'entropie (ou incertitude sur ce que la source émet) est grande.
OrdinateurUn ordinateur est un système de traitement de l'information programmable tel que défini par Alan Turing et qui fonctionne par la lecture séquentielle d'un ensemble d'instructions, organisées en programmes, qui lui font exécuter des opérations logiques et arithmétiques. Sa structure physique actuelle fait que toutes les opérations reposent sur la logique binaire et sur des nombres formés à partir de chiffres binaires.
Série de Taylorthumb|Brook Taylor, dont la série porte le nom. En mathématiques, et plus précisément en analyse, la série de Taylor au point d'une fonction (réelle ou complexe) indéfiniment dérivable en ce point, appelée aussi le développement en série de Taylor de en , est une série entière approchant la fonction autour de , construite à partir de et de ses dérivées successives en . Elles portent le nom de Brook Taylor, qui les a introduites en 1715.
Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Moyenne arithmético-géométriqueLa moyenne arithmético-géométrique de deux réels positifs est une valeur intermédiaire obtenue comme limite de deux suites adjacentes satisfaisant une relation de récurrence qui reprend les formules de moyennes arithmétique et géométrique. La convergence quadratique de ces suites permet une approximation rapide de la moyenne arithmético-géométrique qui est notamment associée à la longueur d'une ellipse en fonction des longueurs de ses axes.
Intégration (mathématiques)En mathématiques, l'intégration ou calcul intégral est l'une des deux branches du calcul infinitésimal, l'autre étant le calcul différentiel. Les intégrales sont utilisées dans de multiples disciplines scientifiques notamment en physique pour des opérations de mesure de grandeurs (longueur d'une courbe, aire, volume, flux) ou en probabilités. Ses utilités pluridisciplinaires en font un outil scientifique fondamental. C'est la raison pour laquelle l'intégration est souvent abordée dès l'enseignement secondaire.
Formule d'EulerLa formule d'Euler est une égalité mathématique, attribuée au mathématicien suisse Leonhard Euler. Elle s'écrit, pour tout nombre réel x, et se généralise aux x complexes. Ici, le nombre e est la base des logarithmes naturels, i est l'unité imaginaire, sin et cos sont des fonctions trigonométriques. Cette formule peut être interprétée en disant que la fonction x ↦ e, appelée fonction cis, décrit le cercle unité dans le plan complexe lorsque x varie dans l'ensemble des nombres réels.
Leonhard EulerLeonhard Euler (), né le à Bâle (Suisse) et mort le à Saint-Pétersbourg (Empire russe), est un mathématicien et physicien suisse, qui passa la plus grande partie de sa vie dans l'Empire russe et en Allemagne. Il était notamment membre de l'Académie royale des sciences de Prusse à Berlin. Euler fit d'importantes découvertes dans des domaines aussi variés que le calcul infinitésimal et la théorie des graphes. Il introduisit également une grande partie de la terminologie et de la notation des mathématiques modernes, en particulier pour l'analyse mathématique, comme la notion de fonction mathématique.