Lieu géométriqueEn mathématiques, un lieu géométrique est un ensemble de points remplissant une condition en fonction de son axe ou de son nombre de points, données par un problème de construction géométrique (par exemple à partir d'un point mobile sur une courbe) ou par des équations ou inéquations reliant des fonctions de points (notamment des distances). La médiatrice d'un segment est le lieu des points du plan à égale distance des extrémités de ce segment. L’arc capable est le lieu des points d’où l’on voit un segment sous un angle donné.
DiscriminantEn mathématiques, le discriminant noté , ou le réalisant noté , est une notion algébrique. Il est utilisé pour résoudre des équations du second degré. Il se généralise pour des polynômes de degré > 0 quelconque et dont les coefficients sont choisis dans des ensembles munis d'une addition et d'une multiplication. Le discriminant apporte dans ce cadre une information sur l'existence ou l'absence de racine multiple. Le discriminant est utilisé dans d'autres domaines que celui de l'étude des polynômes.
Duplication du cubevignette|upright=1.2|Un cube de volume unitaire (gauche) et un cube de volume 2 (droite).À partir de la figure de gauche, il est impossible de construire par les moyens géométriques traditionnels le cube de droite.|alt=croquis de 2 cubes En mathématiques, la duplication du cube, ou problème de Délos, est un problème géométrique classique faisant partie des trois grands problèmes de l'Antiquité, avec la quadrature du cercle et la trisection de l'angle. Il consiste à construire à la règle et au compas un cube de volume double de celui d'un cube donné.
Incidence (geometry)In geometry, an incidence relation is a heterogeneous relation that captures the idea being expressed when phrases such as "a point lies on a line" or "a line is contained in a plane" are used. The most basic incidence relation is that between a point, P, and a line, l, sometimes denoted P I l. If P I l the pair (P, l) is called a flag. There are many expressions used in common language to describe incidence (for example, a line passes through a point, a point lies in a plane, etc.
Problème à deux corpsLe problème à deux corps est un modèle théorique important en mécanique, qu'elle soit classique ou quantique, dans lequel sont étudiés les mouvements de deux corps assimilés à des points matériels en interaction mutuelle (conservative), le système global étant considéré comme isolé. Dans cet article, seul sera abordé le problème à deux corps en mécanique classique (voir par exemple l'article atome d'hydrogène pour un exemple en mécanique quantique), d'abord dans le cas général d'un potentiel attractif, puis dans le cas particulier très important où les deux corps sont en interaction gravitationnelle, ou mouvement képlérien, lequel est un sujet important de la mécanique céleste.
ParaboloïdeEn mathématiques, un paraboloïde est une surface du second degré de l'espace euclidien. Il fait donc partie des quadriques, avec pour caractéristique principale de ne pas posséder de centre de symétrie. Certaines sections d'un paraboloïde avec un plan sont des paraboles. D'autres sont, selon le cas, des ellipses ou des hyperboles. On distingue donc les paraboloïdes elliptiques et les paraboloïdes hyperboliques. Cette surface peut s'obtenir en faisant glisser une parabole sur une autre parabole tournant sa concavité dans la même direction.
Théorème de Pappusvignette|Configuration de Pappus : Dans l'hexagone AbCaBc, où les points A, B, C, d'une part et a, b, c d'autre part, sont alignés, les points X, Y, Z le sont aussi. Le théorème de Pappus est un théorème de géométrie concernant l'alignement de trois points : si on considère trois points alignés A, B, C et trois autres points également alignés a, b, c, les points d'intersection des droites (Ab)-(Ba), (Ac)-(Ca), et (Bc)-(Cb) sont également alignés.
Cas dégénéréEn mathématiques, un cas dégénéré peut consister en un objet dont la définition fait apparaître des éléments redondants ou superflus, se ramenant parfois à une définition plus simple. Il peut aussi être vu comme un cas particulier d'une construction générale, ne satisfaisant pas une certaine propriété générique, notamment si ces cas sont rares dans un sens topologique ou en théorie de la mesure.
Secteur circulaireUn secteur circulaire est la partie d'un disque délimitée par deux rayons et un arc de cercle, où la plus petite aire est connue sous le nom de secteur mineur, la plus grande étant le secteur majeur. Son domaine peut être calculé comme décrit ci-dessous. Soient θ l'angle en radians et r le rayon. La superficie totale d'un disque est π r.
Cône (géométrie)vignette|Illustration à l'article Problemata mathematica... publiée sur les Acta Eruditorum, 1734 En géométrie, un cône est une surface réglée ou bien un solide. Un cône est une surface réglée définie par une droite (d), appelée génératrice, passant par un point fixe S appelé sommet et un point variable décrivant une courbe (c), appelée courbe directrice. On parle aussi dans ce cas de surface conique. Cône de révolution Parmi ces surfaces coniques, la plus étudiée est le cône de révolution dans lequel la courbe directrice est un cercle de centre O situé dans un plan perpendiculaire à (SO).