Thābit ibn QurraAbu'l Hasan Thabit ibn Qurra' ibn Marwan al-Sabi al-Harrani (ابو الحسن ثابت بن قرة بن مروان الحراني) mieux connu sous le nom de Thābit ibn Qurra (ثابت بن قرة) (Harran, 826 ou 836 - ) est un astronome, astrologue, mathématicien, philosophe et théoricien de la musique syrien ayant vécu dans le califat abbasside. En latin, il était connu sous le nom de Thebit. Abu al Hassan Thabit ibn Qurra est issu de la communauté des Sabéens, qui a son centre à Harran.
Steiner conicThe Steiner conic or more precisely Steiner's generation of a conic, named after the Swiss mathematician Jakob Steiner, is an alternative method to define a non-degenerate projective conic section in a projective plane over a field. The usual definition of a conic uses a quadratic form (see Quadric (projective geometry)). Another alternative definition of a conic uses a hyperbolic polarity. It is due to K. G. C. von Staudt and sometimes called a von Staudt conic.
Kepler problemIn classical mechanics, the Kepler problem is a special case of the two-body problem, in which the two bodies interact by a central force F that varies in strength as the inverse square of the distance r between them. The force may be either attractive or repulsive. The problem is to find the position or speed of the two bodies over time given their masses, positions, and velocities. Using classical mechanics, the solution can be expressed as a Kepler orbit using six orbital elements.
Géométrie synthétiqueLa géométrie synthétique ou géométrie pure est fondée sur une approche axiomatique (donc, « purement logique ») de la géométrie. Elle constitue une branche de la géométrie étudiant diverses propriétés et divers théorèmes uniquement par des méthodes d'intersections, de transformations et de constructions. Elle s'oppose à la géométrie analytique et refuse systématiquement l'utilisation des propriétés analytiques des figures ou l'appel aux coordonnées. Ses concepts principaux sont l'intersection, les transformations y compris par polaires réciproques, la logique.
Parallélisme (géométrie)En géométrie affine, le parallélisme est une propriété relative aux droites, aux plans ou plus généralement aux sous-espaces affines. La notion de parallélisme a été initialement formulée par Euclide dans ses Éléments, mais sa présentation a évolué dans le temps, passant d'une définition axiomatique à une simple définition. La notion de parallélisme est introduite dans le Livre I des Éléments d'Euclide. Pour Euclide, une droite s'apparente plutôt à un segment.
PerspectivityIn geometry and in its applications to drawing, a perspectivity is the formation of an image in a picture plane of a scene viewed from a fixed point. The science of graphical perspective uses perspectivities to make realistic images in proper proportion. According to Kirsti Andersen, the first author to describe perspectivity was Leon Alberti in his De Pictura (1435). In English, Brook Taylor presented his Linear Perspective in 1715, where he explained "Perspective is the Art of drawing on a Plane the Appearances of any Figures, by the Rules of Geometry".
Théorème des cinq pointsEn géométrie, le théorème des cinq points est un énoncé sur les coniques du plan, démontré initialement par Blaise Pascal. Il assure que par cinq points trois à trois non alignés passe une unique conique propre. Ce théorème admet des versions dégénérées, par exemple, avec quatre conditions d'incidence et une de tangence : il existe une unique conique propre passant par quatre points trois à trois non alignés, et tangente en l'un de ces points à une droite prescrite ne contenant aucun des trois autres points ; ou encore, avec trois conditions d'incidence et deux de tangence : il existe une unique conique propre passant par trois points non alignés prescrits, et tangente en chacun des deux premiers points à une droite prescrite qui ne contient qu'un seul des trois points.
Director circleIn geometry, the director circle of an ellipse or hyperbola (also called the orthoptic circle or Fermat–Apollonius circle) is a circle consisting of all points where two perpendicular tangent lines to the ellipse or hyperbola cross each other. The director circle of an ellipse circumscribes the minimum bounding box of the ellipse. It has the same center as the ellipse, with radius , where and are the semi-major axis and semi-minor axis of the ellipse.
Confocal conic sectionsIn geometry, two conic sections are called confocal if they have the same foci. Because ellipses and hyperbolas have two foci, there are confocal ellipses, confocal hyperbolas and confocal mixtures of ellipses and hyperbolas. In the mixture of confocal ellipses and hyperbolas, any ellipse intersects any hyperbola orthogonally (at right angles). Parabolas have only one focus, so, by convention, confocal parabolas have the same focus and the same axis of symmetry.
Multiplicité (mathématiques)En mathématiques, on définit pour certaines propriétés la multiplicité d'une valeur ayant cette propriété. Il s'agit en général d'un nombre naturel qui indique « combien de fois » la valeur possède la propriété. Cela est dépourvu de sens en général (on possède une propriété ou on ne la possède pas), mais une interprétation naturelle existe dans certains cas. En général une propriété pour laquelle des multiplicités sont définies détermine un multiensemble de valeurs plutôt qu'un simple ensemble.