Parametric equationIn mathematics, a parametric equation defines a group of quantities as functions of one or more independent variables called parameters. Parametric equations are commonly used to express the coordinates of the points that make up a geometric object such as a curve or surface, called parametric curve and parametric surface, respectively. In such cases, the equations are collectively called a parametric representation, or parametric system, or parameterization (alternatively spelled as parametrisation) of the object.
Point à l'infiniEn mathématiques, et plus particulièrement en géométrie et en topologie, on appelle point à l'infini un objet adjoint à l'espace que l'on veut étudier pour pouvoir plus commodément y définir certaines notions de limites « à l'infini », ou encore pour obtenir des énoncés plus uniformes, tels que « deux droites se coupent toujours en un point, situé à l'infini si elles sont parallèles ». La notion de point à l'infini apparait au dans le cadre du développement des méthodes de la perspective conique, avec l'invention de la « costruzione abbreviata » d'Alberti.
Équation du second degréEn mathématiques, une équation du second degré, ou équation quadratique, est une équation polynomiale de degré 2, c'est-à-dire qu'elle peut s'écrire sous la forme : Dans cette équation, x est l'inconnue les lettres a, b et c représentent les coefficients, avec a différent de 0. a est le coefficient quadratique, b est le coefficient linéaire, et c est un terme constant où le polynome est défini sur .
Jean-Henri LambertJean-Henri Lambert (Johann Heinrich Lambert en allemand et en anglais) (1728-1777) est un mathématicien et philosophe. Il s'est illustré en mathématiques pures (il a démontré que le nombre π n'est pas rationnel) et en mathématiques appliquées. Jean-Henri Lambert est considéré comme un Mulhousien, puisque Mulhouse est alors une cité-État ; un Alsacien, puisque Mulhouse est en Alsace ; un Suisse, puisque Mulhouse était une république alliée de la Confédération des XIII cantons (cela permit à Mulhouse d'éviter les malheurs de la guerre de Trente Ans) ; et un « Allemand », puisqu'il publia beaucoup de ses écrits dans cette langue (il a aussi écrit en français et en latin) et que l'académie qui le reconnut était allemande.
Projective rangeIn mathematics, a projective range is a set of points in projective geometry considered in a unified fashion. A projective range may be a projective line or a conic. A projective range is the dual of a pencil of lines on a given point. For instance, a correlation interchanges the points of a projective range with the lines of a pencil. A projectivity is said to act from one range to another, though the two ranges may coincide as sets. A projective range expresses projective invariance of the relation of projective harmonic conjugates.
Quartic functionIn algebra, a quartic function is a function of the form where a is nonzero, which is defined by a polynomial of degree four, called a quartic polynomial. A quartic equation, or equation of the fourth degree, is an equation that equates a quartic polynomial to zero, of the form where a ≠ 0. The derivative of a quartic function is a cubic function.
Diamètrethumb|Diamètre d'un cercle. La notion de diamètre concerne initialement les figures simples de la géométrie euclidienne que sont le cercle et la sphère mais la notion s'élargit par analogie à plusieurs autres objets géométriques. Dans un cercle ou une sphère, le diamètre est un segment de droite passant par le centre et limité par les points du cercle ou de la sphère. Le diamètre est aussi la longueur de ce segment. Le diamètre d'un objet cylindrique ou sphérique est appelé module.
La Quadrature de la parabole (Archimède)thumb|Archimède inscrit un triangle particulier dans le segment de parabole. L'aire du segment de parabole est égale aux 4/3 de l'aire de ce triangle. La Quadrature de la parabole est un traité de géométrie écrit par Archimède au , sous la forme d'une lettre à son ami Dosithée (Dositheus). Cette œuvre énonce 24 propositions sur les paraboles et démontre que l'aire d'un segment de parabole (région délimitée par une parabole et une corde) est égale aux 4/3 de l'aire du triangle inscrit dont la médiane est parallèle à l'axe de la parabole.
ArchimèdeArchimède de Syracuse (en grec ancien : / Arkhimếdês), né à Syracuse vers 287 av. J.-C. et mort en cette même ville en 212 av. J.-C., est un grand scientifique grec de Sicile (Grande-Grèce) de l'Antiquité, physicien, astronome, mathématicien et ingénieur. Bien que peu de détails de sa vie soient connus, il est considéré comme l'un des principaux scientifiques de l'Antiquité classique. Parmi ses domaines d'étude en physique, on peut citer l'hydrostatique , la mécanique statique, et l'explication du principe du levier.
Plan projectif réelEn géométrie, le plan projectif réel, noté RP ou P(R), est un exemple simple d'espace projectif (le corps des scalaires est constitué des nombres réels et la dimension est 2), permettant d'illustrer les mécanismes fondamentaux de la géométrie projective. Notamment, des représentations graphiques simples sont possibles qui font apparaître les caractéristiques propres à cette géométrie, contrairement au cas d'espaces construits sur d'autres corps.