Mathématiques indiennesLa chronologie des mathématiques indiennes s'étend de la civilisation de la vallée de l'Indus (-3300 à -1500) jusqu'à l'Inde moderne. Parmi les contributions des mathématiciens indiens au développement de la discipline, la plus féconde est certainement la numération décimale de position, appuyée sur des chiffres indiens, empruntés par les Arabes et qui se sont imposés dans le monde entier. Les Indiens ont maîtrisé le zéro, les nombres négatifs, les fonctions trigonométriques.
QuadrilatèreEn géométrie plane, un quadrilatère est un polygone à quatre côtés. Les trapèzes, parallélogrammes, losanges, rectangles, carrés et cerfs-volants sont des quadrilatères particuliers. Le mot « quadrilatère » provient du latin : quatuor, quatre, et latus, lateris, côté. Le mot équivalent d'origine grecque est tétrapleure (de τεσσερα / tèssera, quatre, et πλευρά / pleura, côté) ou tétragone (de γωνία / gônia, angle). Le mot tétragone était employé par Gerbert d'Aurillac au et par Oresme au .
Quadrilatère inscriptibleEn géométrie, un quadrilatère inscriptible (ou cyclique ) est un quadrilatère dont les sommets se trouvent tous sur un seul et même cercle. Les sommets sont dits cocycliques. Le quadrilatère est dit inscrit dans le cercle, et le cercle, circonscrit au quadrilatère. Un quadrilatère convexe est inscriptible si et seulement si les quatre médiatrices des côtés sont concourantes. Le point de concours est alors le centre du cercle circonscrit et les médiatrices des diagonales passent par ce point.
Trapèze circonscriptibledroite|vignette|300x300px|Un trapèze circonscriptible En géométrie euclidienne, un trapèze circonscriptible, également appelé trapèze tangent, est un trapèze dont les quatre côtés sont tous tangents à un cercle situé à l'intérieur du trapèze : le cercle inscrit. C'est un cas particulier de quadrilatère circonscriptible, dont au moins une paire de côtés opposés sont parallèles. Les losanges et carrés sont des exemples de trapèzes circonscriptibles.
CuboidIn geometry, a cuboid is a hexahedron, a six-faced solid. Its faces are quadrilaterals. Cuboid means "like a cube". A cuboid is like a cube in the sense that by adjusting the lengths of the edges or the angles between faces a cuboid can be transformed into a cube. In mathematical language a cuboid is a convex polyhedron whose polyhedral graph is the same as that of a cube. A special case of a cuboid is a rectangular cuboid, with six rectangles as faces. Its adjacent faces meet at right angles.
Formule de HéronEn géométrie euclidienne, la formule de Héron, portant le nom de Héron d'Alexandrie, permet de calculer l'aire S d'un triangle quelconque en ne connaissant que les longueurs a, b et c de ses trois côtés : La formule était déjà connue d'Archimède. Héron d'Alexandrie énonce et démontre son théorème dans son traité Les Métriques. Sa démonstration s'appuie sur les propriétés du cercle inscrit dans un triangle et sur l'exploitation des rapports de longueurs dans des triangles semblables.
Tronc (géométrie)Un tronc est la partie d'un solide située entre deux plans parallèles. Le solide est généralement un cône ou une pyramide. Les faces du solide obtenues dans les plans de coupe sont appelées bases du tronc, et la distance entre les deux plans de coupe est la hauteur du tronc. Le volume d'un tronc de pyramide ou de cône est le produit de sa hauteur par la moyenne arithmétique des aires de ses bases et de leur moyenne géométrique.
Formule de BrahmaguptaEn géométrie euclidienne, la formule de Brahmagupta, portant le nom du mathématicien indien du Brahmagupta, est une généralisation de la formule de Héron à l'aire d'un quadrilatère convexe inscriptible (c'est-à-dire dont les sommets se situent sur un même cercle), uniquement en fonction des longueurs de ses côtés : où est le demi-périmètre du quadrilatère, a, b, c et d sont les longueurs de ses côtés et S son aire . Elle représente un cas particulier de la formule de Bretschneider donnant l'aire d'un quadrilatère non forcément inscriptible, concave ou convexe mais non croisé.
RhomboïdeLe mot « rhomboïde » est issu du latin rhomboides, du grec rhomboeidēs signifiant en forme de toupie, et est attesté dès le pour désigner un muscle d'après sa forme de parallélogramme. Il a en géométrie plusieurs acceptions différentes. Le muscle rhomboïde, le muscle grand rhomboïde et le muscle petit rhomboïde sont des muscles du dos. Euclide introduit le terme dans la définition 33 du livre des Éléments, un rhomboïde est un parallélogramme qui n'est ni un rectangle ni un losange.
Ex-tangential quadrilateralIn Euclidean geometry, an ex-tangential quadrilateral is a convex quadrilateral where the extensions of all four sides are tangent to a circle outside the quadrilateral. It has also been called an exscriptible quadrilateral. The circle is called its excircle, its radius the exradius and its center the excenter (E in the figure). The excenter lies at the intersection of six angle bisectors.