Coordonnées homogènesEn mathématiques, et plus particulièrement en géométrie projective, les coordonnées homogènes (ou coordonnées projectives), introduites par August Ferdinand Möbius, rendent les calculs possibles dans l'espace projectif, comme les coordonnées cartésiennes le font dans l'espace euclidien. Les coordonnées homogènes sont largement utilisées en infographie et plus particulièrement pour la représentation de scènes en trois dimensions, car elles sont adaptées à la géométrie projective et elles permettent de caractériser les transformations de l'espace.
Motion (geometry)In geometry, a motion is an isometry of a metric space. For instance, a plane equipped with the Euclidean distance metric is a metric space in which a mapping associating congruent figures is a motion. More generally, the term motion is a synonym for surjective isometry in metric geometry, including elliptic geometry and hyperbolic geometry. In the latter case, hyperbolic motions provide an approach to the subject for beginners. Motions can be divided into direct and indirect motions.
Symétrie de translationLa symétrie de translation ou invariance sous les translations est le nom que l'on donne au fait que les lois de la physique (les lois sur la gravité de Newton, sur l'électromagnétisme de Maxwell, sur la relativité d'Einstein) s'écrivent de la même façon en tout point de l'espace. Il y a brisure de symétrie lorsqu'un système ne possède pas la symétrie de translation On peut donner une explication plus précise. Prenons d'abord l'exemple de la loi de la gravitation de Newton. On prend un référentiel de référence qu'on appelle .
Système de coordonnéesvignette|upright=0.7|Système de coordonnées cartésiennes dans un plan vignette|upright=0.7|Système de coordonnées cartésiennes en 3 dimensions En mathématiques, un système de coordonnées permet de faire correspondre à chaque point d'un espace à N , un (et un seul) N-uplet de scalaires. Dans beaucoup de cas, les scalaires considérés sont des nombres réels, mais il est possible d'utiliser des nombres complexes ou des éléments d'un corps commutatif quelconque.
Coordonnées cartésiennesUn système de coordonnées cartésiennes permet de déterminer la position d'un point dans un espace affine (droite, plan, espace de dimension 3, etc.) muni d'un repère cartésien. Le mot cartésien vient du mathématicien et philosophe français René Descartes. Il existe d'autres systèmes de coordonnées permettant de repérer un point dans le plan ou dans l'espace. Sur une droite affine , un repère est la donnée de : une origine , c'est-à-dire un point distingué de ; un vecteur de la droite vectorielle directrice .
Rotation vectorielleSoit E un espace vectoriel euclidien. Une rotation vectorielle de E est un élément du groupe spécial orthogonal SO(E). Si on choisit une base orthonormée de E, sa matrice dans cette base est orthogonale directe. Matrice de rotation Dans le plan vectoriel euclidien orienté, une rotation vectorielle est simplement définie par son angle . Sa matrice dans une base orthonormée directe est : Autrement dit, un vecteur de composantes a pour image le vecteur de composantes que l'on peut calculer avec l'égalité matricielle : c'est-à-dire que l'on a : et Si par exemple et , désigne un des angles du triangle rectangle de côtés 3, 4 et 5.
Opérateur (mathématiques)En mathématiques et en physique théorique, un opérateur est une application entre deux espaces vectoriels topologiques. Soient E et F deux espaces vectoriels topologiques. Un opérateur O est une application de E dans F : Opérateur linéaire Un opérateur est linéaire si et seulement si : où K est le corps des scalaires de E et F. Lorsque E est un -espace vectoriel, et que (c'est un corps), un opérateur est une forme linéaire sur E.
Vecteur euclidienEn mathématiques, et plus précisément en géométrie euclidienne, un vecteur euclidien est un objet géométrique possédant une direction, un sens et une norme. On l'utilise par exemple en physique et en ingénierie pour modéliser une force. On parle aussi parfois de vecteur géométrique dans le plan euclidien (deux dimensions) et de vecteur spatial dans l'espace à trois dimensions. Vecteur#HistoireVecteur En physique et en ingénierie, on travaille souvent dans l'espace euclidien.
Espace affineEn géométrie, la notion d'espace affine généralise la notion d'espace issue de la géométrie euclidienne en omettant les notions d'angle et de distance. Dans un espace affine, on peut parler d'alignement, de parallélisme, de barycentre. Sous la forme qui utilise des rapports de mesures algébriques, qui est une notion affine, le théorème de Thalès et le théorème de Ceva sont des exemples de théorèmes de géométrie affine plane réelle (c'est-à-dire n'utilisant que la structure d'espace affine du plan réel).