Isométrie affineUne isométrie affine est une transformation bijective d'un espace affine euclidien dans un autre qui est à la fois une application affine et une isométrie (c'est-à-dire une bijection conservant les distances). Si cette isométrie conserve aussi l'orientation, on dit que c'est un déplacement. Si elle inverse l'orientation, il s'agit d'un antidéplacement. Les déplacements sont les composés de translations et rotations. Les réflexions sont des antidéplacements. On désigne par le plan (, plus précisément, un plan affine réel euclidien).
Matrice d'une application linéaireEn algèbre linéaire, la matrice d'une application linéaire est une matrice de scalaires qui permet de représenter une application linéaire entre deux espaces vectoriels de dimensions finies, étant donné le choix d'une base pour chacun d'eux. Soient : E et F deux espaces vectoriels sur un corps commutatif K, de dimensions respectives n et m ; B = (e, ... , e) une base de E, C une base de F ; φ une application de E dans F.
Réflexion glisséeEn géométrie euclidienne, une réflexion glissée du plan euclidien est une isométrie affine de ce plan, constituée de la composée d'une réflexion par rapport à une droite et d'une translation dans la direction de cette droite. Cette composition est ici commutative. Plus généralement, dans un espace euclidien quelconque, une réflexion glissée est la composée d'une réflexion par rapport à un hyperplan et d'une translation parallèlement à cet hyperplan. Réflexion (mathématiques) Symétrie (transformation géomét
Angles d'EulerEn mécanique et en mathématiques, les angles d'Euler sont des angles introduits par Leonhard Euler (1707-1783) pour décrire l'orientation d'un solide ou celle d'un référentiel par rapport à un trièdre cartésien de référence. Au nombre de trois, ils sont appelés angle de précession, de nutation et de rotation propre, les deux premiers pouvant être vus comme une généralisation des deux angles des coordonnées sphériques. Le mouvement d'un solide par rapport à un référentiel (un avion dans l'air, un sous-marin dans l'eau, des skis sur une pente.
Transformation géométriqueUne transformation géométrique est une bijection d'une partie d'un ensemble géométrique dans lui-même. L'étude de la géométrie est en grande partie l'étude de ces transformations. Les transformations géométriques peuvent être classées selon la dimension de l'ensemble géométrique : principalement les transformations planes et les transformations dans l'espace. On peut aussi classer les transformations d'après leurs éléments conservés : Jusqu'à l'avant dernière, chacune de ces classes contient la précédente.
Déplacement (géométrie)In geometry and mechanics, a displacement is a vector whose length is the shortest distance from the initial to the final position of a point P undergoing motion. It quantifies both the distance and direction of the net or total motion along a straight line from the initial position to the final position of the point trajectory. A displacement may be identified with the translation that maps the initial position to the final position.
Partie génératrice d'un groupeEn théorie des groupes, une partie génératrice d'un groupe est une partie A de ce groupe telle que tout élément du groupe s'écrit comme produit d'un nombre fini d'éléments de A et de leurs inverses. Un groupe est dit de type fini lorsqu'il admet une partie génératrice finie. Un groupe engendré par un seul élément est isomorphe soit au groupe additif des entiers relatifs (Z, +), soit à un groupe additif de classes modulo n (Z/nZ, +) ; on dit que c'est un groupe monogène.
Motion (geometry)In geometry, a motion is an isometry of a metric space. For instance, a plane equipped with the Euclidean distance metric is a metric space in which a mapping associating congruent figures is a motion. More generally, the term motion is a synonym for surjective isometry in metric geometry, including elliptic geometry and hyperbolic geometry. In the latter case, hyperbolic motions provide an approach to the subject for beginners. Motions can be divided into direct and indirect motions.
Symétrie de translationLa symétrie de translation ou invariance sous les translations est le nom que l'on donne au fait que les lois de la physique (les lois sur la gravité de Newton, sur l'électromagnétisme de Maxwell, sur la relativité d'Einstein) s'écrivent de la même façon en tout point de l'espace. Il y a brisure de symétrie lorsqu'un système ne possède pas la symétrie de translation On peut donner une explication plus précise. Prenons d'abord l'exemple de la loi de la gravitation de Newton. On prend un référentiel de référence qu'on appelle .
Opérateur (mathématiques)En mathématiques et en physique théorique, un opérateur est une application entre deux espaces vectoriels topologiques. Soient E et F deux espaces vectoriels topologiques. Un opérateur O est une application de E dans F : Opérateur linéaire Un opérateur est linéaire si et seulement si : où K est le corps des scalaires de E et F. Lorsque E est un -espace vectoriel, et que (c'est un corps), un opérateur est une forme linéaire sur E.