Mineur (algèbre linéaire)vignette|Il est possible d'utiliser les mineurs d'ordre 2 d'une matrice de dimension 3 pour calculer son déterminant. En algèbre linéaire, les mineurs d'une matrice sont les déterminants de ses sous-matrices carrées. Ainsi si A est une matrice de taille m par n, on appelle mineur d'ordre k le déterminant d'une sous-matrice carrée de taille k obtenue en supprimant m – k lignes et n – k colonnes de la matrice initiale, ce que l'on peut noter det A, où I ( J) est une partie à k éléments de {1, ..., m ( n)}.
Rang (algèbre linéaire)En algèbre linéaire : le rang d'une famille de vecteurs est la dimension du sous-espace vectoriel engendré par cette famille. Par exemple, pour une famille de vecteurs linéairement indépendants, son rang est le nombre de vecteurs ; le rang d'une application linéaire de dans est la dimension de son , qui est un sous-espace vectoriel de . Le théorème du rang relie la dimension de , la dimension du noyau de et le rang de ; le rang d'une matrice est le rang de l'application linéaire qu'elle représente, ou encore le rang de la famille de ses vecteurs colonnes ; le rang d'un système d'équations linéaires est le nombre d'équations que compte tout système échelonné équivalent.
Carré unitévignette|300x300px|Le carré de l'unité dans le plan. En mathématiques, un carré unité est un carré dont les côtés ont une longueur de . Souvent, le carré unité se réfère spécifiquement au carré dans le plan cartésien, avec les coordonnées correspondantes aux sommets ), , , et . Dans un système de coordonnées cartésiennes le carré unité est défini comme le carré constitué des points où x et y sont situés dans l'intervalle fermée de à . Autrement dit, le carré unité est le produit cartésien , où I indique l'intervalle d'unité fermé.
Racine carrée d'une matriceEn mathématiques, la notion de racine carrée d'une matrice particularise aux anneaux de matrices carrées la notion générale de racine carrée dans un anneau. Soient un entier naturel n non nul et M une matrice carrée d'ordre n à coefficients dans un anneau A. Un élément R de M(A) est une racine carrée de M si R = M. Une matrice donnée peut n'admettre aucune racine carrée, comme un nombre fini voire infini de racine carrées. Dans M(R) : est une racine carrée de les (pour tout réel x) sont des racines carrées de n'a pas de racine carrée R, car cela imposerait (mais elle en a dans M(C)).
Logarithme d'une matriceEn mathématiques, et plus particulièrement en analyse, un logarithme d'une matrice est une autre matrice telle que son exponentielle soit égale à la matrice initiale. C'est une généralisation de la notion usuelle de logarithme, considéré comme inverse de la fonction exponentielle, mais le logarithme n'existe pas pour toutes les matrices, et n'est pas unique en général. L'étude du logarithme des matrices conduit au développement de la , car les matrices ayant un logarithme appartiennent à un groupe de Lie, et le logarithme est alors l'élément correspondant de l'algèbre de Lie associée.
Involution (mathématiques)En mathématiques, une involution est une application bijective qui est sa propre réciproque, c'est-à-dire par laquelle chaque élément est l'image de son image. C'est le cas par exemple du changement de signe dans l'ensemble des nombres réels, ou des symétries du plan ou de l'espace en géométrie euclidienne. En algèbre linéaire, les endomorphismes involutifs sont d'ailleurs appelés symétries. Des involutions apparaissent dans de nombreux domaines des mathématiques, notamment en combinatoire et en topologie.
Idempotent matrixIn linear algebra, an idempotent matrix is a matrix which, when multiplied by itself, yields itself. That is, the matrix is idempotent if and only if . For this product to be defined, must necessarily be a square matrix. Viewed this way, idempotent matrices are idempotent elements of matrix rings. Examples of idempotent matrices are: Examples of idempotent matrices are: If a matrix is idempotent, then implying so or implying so or Thus, a necessary condition for a matrix to be idempotent is that either it is diagonal or its trace equals 1.
Arthur CayleyArthur Cayley ( - ) est un mathématicien britannique. Il fait partie des fondateurs de l'école britannique moderne de mathématiques pures. C'est à la faveur d'une visite estivale de ses parents, Henry Cayley (1768-1850) et Maria Antonia Doughty (1794-1875), qui résident alors en Russie, à Saint-Pétersbourg, qu'Arthur Cayley naît en Angleterre, à Richmond, comté de Surrey, plus précisément. La famille paternelle d'Arthur est originaire de Normandie, un aïeul , Osborne de Cailly, ayant été l'un des seigneurs engagés dans l'invasion normande de l'Angleterre en 1066.
Espace vectorielvignette|Dans un espace vectoriel, on peut additionner deux vecteurs. Par exemple, la somme du vecteur v (en bleu) et w (en rouge) est v + w. On peut aussi multiplier un vecteur, comme le vecteur w que l'on peut multiplier par 2, on obtient alors 2w et la somme devient v + 2w. En mathématiques, plus précisément en algèbre linéaire, un espace vectoriel est un ensemble d'objets, appelés vecteurs, que l'on peut additionner entre eux, et que l'on peut multiplier par un scalaire (pour les étirer ou les rétrécir, les tourner, etc.
Vecteur euclidienEn mathématiques, et plus précisément en géométrie euclidienne, un vecteur euclidien est un objet géométrique possédant une direction, un sens et une norme. On l'utilise par exemple en physique et en ingénierie pour modéliser une force. On parle aussi parfois de vecteur géométrique dans le plan euclidien (deux dimensions) et de vecteur spatial dans l'espace à trois dimensions. Vecteur#HistoireVecteur En physique et en ingénierie, on travaille souvent dans l'espace euclidien.