PentadécagoneEn géométrie, un pentadécagone est un polygone à 15 sommets, donc 15 côtés et 90 diagonales. La somme des 15 angles internes d'un pentadécagone non croisé vaut . vignette|Un pentadécagone régulier et ses angles remarquables. Comme on sait construire le triangle équilatéral et le pentagone régulier, on applique le théorème de Gauss : 3 et 5 étant premiers entre eux, en multipliant par la relation de Bézout 2 × 3 – 5 = 1, on obtient l'égalité : Sur un cercle, à partir d'un point A, on place un point G tel que ; le point B tel que est le deuxième sommet du polygone régulier de côté AB.
HexagoneUn hexagone, du grec et , est un polygone à six sommets et six côtés. Un hexagone peut être régulier ou irrégulier. Un hexagone régulier est un hexagone convexe dont les six côtés ont tous la même longueur. Les angles internes d'un hexagone régulier sont tous de 120°. Comme les carrés et les triangles équilatéraux, les hexagones réguliers permettent un pavage régulier du plan. Les pavages carrés et hexagonaux sont notamment utilisés pour réaliser des dallages.
HeptadécagoneUn heptadécagone est un polygone à 17 sommets, donc 17 côtés et 119 diagonales. La somme des angles internes d'un heptadécagone non croisé vaut , soit . Dans l'heptadécagone régulier convexe, chaque angle interne vaut donc , soit environ 158,82°. Un heptadécagone régulier est un heptadécagone dont les 17 côtés ont la même longueur et dont les angles internes ont même mesure. Il y en a huit : sept étoilés (les heptadécagrammes notés {17/k} pour k de 2 à 8) et un convexe (noté {17}).
Icosahedral symmetryIn mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual of the icosahedron) and the rhombic triacontahedron. Every polyhedron with icosahedral symmetry has 60 rotational (or orientation-preserving) symmetries and 60 orientation-reversing symmetries (that combine a rotation and a reflection), for a total symmetry order of 120.
Diagonalevignette|Le segment [D'B'] est une diagonale du carré A'B'C'D'.[D'B'] et [A'C] sont tous deux des diagonales du cube ci-dessus. On appelle diagonale d'un polygone tout segment reliant deux sommets non consécutifs (non reliés par un côté). Un polygone à n côtés possède donc diagonales. Un quadrilatère est un parallélogramme si, et seulement si, ses diagonales se croisent en leur milieu. On appelle diagonale de l'espace une diagonale d'un polytope, diagonale de l'espace principale une diagonale principale d'un polytope, diagonale de l'espace brisée une diagonale brisée d'un hypercube.
Construction à la règle et au compasEuclide a fondé sa géométrie sur un système d'axiomes qui assure en particulier qu'il est toujours possible de tracer une droite passant par deux points donnés et qu'il est toujours possible de tracer un cercle de centre donné et passant par un point donné. La géométrie euclidienne est donc la géométrie des droites et des cercles, donc de la règle (non graduée) et du compas. L'intuition d'Euclide était que tout nombre pouvait être construit, ou « obtenu », à l'aide de ces deux instruments.
IcosagoneUn icosagone est un polygone à 20 sommets, donc 20 côtés et 170 diagonales. La somme des angles internes d'un icosagone non croisé vaut . L'icosagone régulier est constructible. Un icosagone régulier est un icosagone dont les 20 côtés ont même longueur et dont les angles internes ont même mesure. Il y en a quatre : trois étoilés (les icosagrammes notés {20/3}, {20/7} et {20/9}) et un convexe (noté {20}). C'est de ce dernier qu'il s'agit lorsqu'on parle de « l'icosagone régulier ». Regular_star_polygon_20-3.
TriacontagonIn geometry, a triacontagon or 30-gon is a thirty-sided polygon. The sum of any triacontagon's interior angles is 5040 degrees. The regular triacontagon is a constructible polygon, by an edge-bisection of a regular pentadecagon, and can also be constructed as a truncated pentadecagon, t{15}. A truncated triacontagon, t{30}, is a hexacontagon, {60}. One interior angle in a regular triacontagon is 168 degrees, meaning that one exterior angle would be 12°.
Polygone régulier étoiléEn géométrie, un polygone régulier étoilé (à ne pas confondre avec une partie étoilée) est un polygone régulier non convexe. Les polygones étoilés non réguliers ne sont pas formellement définis. Branko Grünbaum identifie deux notions primaires utilisées par Kepler, l'une étant le polygone régulier étoilé avec des arêtes sécantes qui ne génèrent pas de nouveaux sommets, et l'autre étant de simples polygones concaves.
Pavage de Penrosevignette|Un pavage de Penrose|alt= vignette|Roger Penrose, debout sur le pavage de Penrose du foyer de l'institut Mitchell, Texas A&M University|alt= Les pavages de Penrose sont, en géométrie, des pavages du plan découverts par le mathématicien et physicien britannique Roger Penrose dans les années 1970. En 1984, ils ont été utilisés comme un modèle intéressant de la structure des quasi-cristaux.