Formule intégrale de Cauchyvignette|Illustration de la formule intégrale de Cauchy en analyse complexe La formule intégrale de Cauchy, due au mathématicien Augustin Louis Cauchy, est un point essentiel de l'analyse complexe. Elle exprime le fait que la valeur en un point d'une fonction holomorphe est complètement déterminée par les valeurs qu'elle prend sur un chemin fermé contenant (c'est-à-dire entourant) ce point. Elle peut aussi être utilisée pour exprimer sous forme d'intégrales toutes les dérivées d'une fonction holomorphe.
Théorème des résidusEn analyse complexe, le théorème des résidus est un outil puissant pour évaluer des intégrales curvilignes de fonctions holomorphes sur des courbes fermées qui repose sur les résidus de la fonction à intégrer. Il est utilisé pour calculer des intégrales de fonctions réelles ainsi que la somme de certaines séries. Il généralise le théorème intégral de Cauchy et la formule intégrale de Cauchy. Soient U un sous-ensemble ouvert et simplement connexe du plan complexe C, {z, ...
Champ conservatifUn champ de vecteurs est dit à circulation conservative (ou irrotationnel) si sa circulation sur toute courbe fermée est nulle (son rotationnel est alors nul, et réciproquement). Sous certaines conditions relatives au domaine de définition et à la régularité du champ, on peut dériver le potentiel de ce champ, fonction scalaire qui en permet une représentation alternative. De même, un champ de vecteurs est dit à flux conservatif si son flux sur toute surface fermée est nul (sa divergence est alors nulle, et réciproquement).
Théorème fondamental de l'analyseEn mathématiques, le théorème fondamental de l'analyse (ou théorème fondamental du calcul différentiel et intégral) établit que les deux opérations de base de l'analyse, la dérivation et l'intégration, sont, dans une certaine mesure, réciproques l'une de l'autre. Il est constitué de deux familles d'énoncés (plus ou moins généraux selon les versions, et dépendant de la théorie de l'intégration choisie) : premier théorème : certaines fonctions sont « la dérivée de leur intégrale » ; second théorème : certaines fonctions sont « l'intégrale de leur dérivée ».
Logarithme complexeEn mathématiques, le logarithme complexe est une fonction généralisant la fonction logarithme naturel (définie sur ]0,+∞[) au domaine C* des nombres complexes non nuls. Plusieurs définitions sont possibles. Aucune ne permet de conserver, à la fois, l'univocité, la continuité et les propriétés algébriques de la fonction logarithme. Histoire des nombres complexes La question de savoir s'il est possible de prolonger le logarithme naturel (c'est-à-dire de le définir sur un ensemble plus grand que ]0,+∞[) s'est posée dès la seconde moitié du avec les développements en série des fonctions.
Flux (physique)En physique, un flux est une intégrale de surface de la composante normale d'un champ vectoriel sur une surface donnée. Le champ vectoriel associé est souvent nommé densité de flux. Cette définition rejoint celle du flux en mathématiques. Si dans certains domaines de la physique, le flux est également un débit, lié à un déplacement de matière ou à un transfert d'énergie, ce n'est pas toujours le cas : on aime malgré tout se représenter un flux comme caractéristique de ce qui s'écoule le long des lignes de champs à travers la frontière que marque la surface.
Champ de vecteursthumb|Un exemple de champ de vecteurs, de la forme (-y,x). thumb|Autre exemple. thumb|Le flux d'air autour d'un avion est un champ tridimensionnel (champ des vitesses des particules d'air), ici visualisé par les bulles qui matérialisent les lignes de courant. En mathématiques, un champ de vecteurs ou champ vectoriel est une fonction qui associe un vecteur à chaque point d'un espace euclidien ou plus généralement d'une variété différentielle.
Circulation (physics)In physics, circulation is the line integral of a vector field around a closed curve. In fluid dynamics, the field is the fluid velocity field. In electrodynamics, it can be the electric or the magnetic field. Circulation was first used independently by Frederick Lanchester, Martin Kutta and Nikolay Zhukovsky. It is usually denoted Γ (Greek uppercase gamma). If V is a vector field and dl is a vector representing the differential length of a small element of a defined curve, the contribution of that differential length to circulation is dΓ: Here, θ is the angle between the vectors V and dl.
Champ scalaireUn champ scalaire est une fonction de plusieurs variables qui associe un seul nombre (ou scalaire) à chaque point de l'espace. Les champs scalaires sont utilisés en physique pour représenter les variations spatiales de grandeurs scalaires. Un champ scalaire est une forme ou où x est un vecteur de Rn. Le champ scalaire peut être visualisé comme un espace à n dimensions avec un nombre complexe ou réel attaché à chaque point de l'espace. La dérivée d'un champ scalaire résulte en un champ vectoriel appelé le gradient.
Résidu (analyse complexe)En analyse complexe, le résidu est un nombre complexe qui décrit le comportement de l'intégrale curviligne d'une fonction holomorphe aux alentours d'une singularité. Les résidus se calculent assez facilement et, une fois connus, permettent de calculer des intégrales curvilignes plus compliquées grâce au théorème des résidus. Le terme résidu vient de Cauchy dans ses Exercices de mathématiques publié en 1826. Soit un ouvert de , un ensemble dans D de points isolés et une fonction holomorphe.