Extended sideIn plane geometry, an extended side or sideline of a polygon is the line that contains one side of the polygon. The extension of a finite side into an infinite line arises in various contexts. In an obtuse triangle, the altitudes from the acute angled vertices intersect the corresponding extended base sides but not the base sides themselves. The excircles of a triangle, as well as the triangle's inconics that are not inellipses, are externally tangent to one side and to the other two extended sides.
Centre du cercle d'EulerEn géométrie, le centre du cercle d'Euler, ou centre des neuf points est un centre du triangle, un point d'un triangle plat qui ne dépend que de l'existence du triangle. Son nom vient du fait qu'il s'agit du centre du cercle d'Euler ou cercle des neuf points, qui passe par neuf points caractéristiques du triangle : les milieux des trois côtés, les pieds des trois hauteurs et les points milieux entre les sommets et l'orthocentre. Le centre du cercle d'Euler est référencé par X(5) dans l'Encyclopedia of Triangle Centers de Clark Kimberling.
Inégalité triangulaireEn géométrie, l'inégalité triangulaire est le fait que, dans un triangle, la longueur d'un côté est inférieure à la somme des longueurs des deux autres côtés. Cette inégalité est relativement intuitive. Dans la vie ordinaire, comme dans la géométrie euclidienne, cela se traduit par le fait que la ligne droite est le plus court chemin : le plus court chemin d'un point A à un point B est d'y aller tout droit, sans passer par un troisième point C qui ne serait pas sur la ligne droite.
Congruence (géométrie)En géométrie euclidienne, la congruence est une relation sur l'ensemble des parties de l'espace considéré : deux ensembles de points sont dits si l'un est l' de l'autre par une isométrie (une bijection qui conserve les distances). De manière moins formelle, deux figures sont congruentes si elles ont la même forme et la même taille, mais ont des positions respectives différentes. La congruence est une relation d'équivalence plus fine que la similitude : par exemple, deux triangles isométriques sont toujours semblables.
Déplacement (géométrie)In geometry and mechanics, a displacement is a vector whose length is the shortest distance from the initial to the final position of a point P undergoing motion. It quantifies both the distance and direction of the net or total motion along a straight line from the initial position to the final position of the point trajectory. A displacement may be identified with the translation that maps the initial position to the final position.
IncenterIn geometry, the incenter of a triangle is a triangle center, a point defined for any triangle in a way that is independent of the triangle's placement or scale. The incenter may be equivalently defined as the point where the internal angle bisectors of the triangle cross, as the point equidistant from the triangle's sides, as the junction point of the medial axis and innermost point of the grassfire transform of the triangle, and as the center point of the inscribed circle of the triangle.
Droite sécantevignette|Plan d'une droite sécante coupant un cercle. En géométrie, une droite est sécante à un autre objet géométrique lorsqu'elle « coupe » cet autre objet. On dit que deux droites sont sécantes si elles ont un unique point commun. Pour étudier une courbe au voisinage d'un de ses points P, il est utile de considérer les sécantes issues de P, c'est-à-dire les droites passant par P et un autre point Q de la courbe.
Enveloppe convexeL'enveloppe convexe d'un objet ou d'un regroupement d'objets géométriques est l'ensemble convexe le plus petit parmi ceux qui le contiennent. Dans un plan, l'enveloppe convexe peut être comparée à la région limitée par un élastique qui englobe tous les points qu'on relâche jusqu'à ce qu'il se contracte au maximum. L'idée serait la même dans l'espace avec un ballon qui se dégonflerait jusqu'à être en contact avec tous les points qui sont à la surface de l'enveloppe convexe.
Polygone convexeEn géométrie, un polygone convexe est un polygone simple dont l'intérieur est un ensemble convexe. Un polygone simple qui n'est pas convexe est dit concave. Pour un polygone simple, les propriétés suivantes sont équivalentes : le polygone est convexe, les angles du polygone sont tous inférieurs à 180 degrés, tout segment joignant deux sommets du polygone est inclus dans la composante fermée bornée délimitée par le polygone. Le polygone est toujours entièrement inclus dans un demi-plan dont la frontière porte un côté quelconque du polygone.
Parallélisme (géométrie)En géométrie affine, le parallélisme est une propriété relative aux droites, aux plans ou plus généralement aux sous-espaces affines. La notion de parallélisme a été initialement formulée par Euclide dans ses Éléments, mais sa présentation a évolué dans le temps, passant d'une définition axiomatique à une simple définition. La notion de parallélisme est introduite dans le Livre I des Éléments d'Euclide. Pour Euclide, une droite s'apparente plutôt à un segment.