Absolute value (algebra)In algebra, an absolute value (also called a valuation, magnitude, or norm, although "norm" usually refers to a specific kind of absolute value on a field) is a function which measures the "size" of elements in a field or integral domain. More precisely, if D is an integral domain, then an absolute value is any mapping |x| from D to the real numbers R satisfying: It follows from these axioms that |1| = 1 and |-1| = 1. Furthermore, for every positive integer n, |n| = |1 + 1 + ... + 1 (n times)| = |−1 − 1 − .
Nombre de HeegnerEn théorie des nombres, un nombre de Heegner est un entier positif n sans facteur carré tel que l'anneau des entiers du corps quadratique imaginaire Q[i] est principal (ou encore : factoriel, ce qui ici est équivalent car l'anneau est de Dedekind). Le théorème de Stark-Heegner indique qu'il y a exactement neuf nombres de Heegner :1, 2, 3, 7, 11, 19, 43, 67 et 163 (). Ce résultat était conjecturé par Gauss et démontré, à quelques erreurs près, par Kurt Heegner en 1952.
Crible quadratiqueL'algorithme du crible quadratique est un algorithme de factorisation fondé sur l'arithmétique modulaire. C'est en pratique le plus rapide après le crible général des corps de nombres, lequel est cependant bien plus compliqué, et n'est plus performant que pour factoriser un nombre entier d'au moins cent chiffres. Le crible quadratique est un algorithme de factorisation non spécialisé, c'est-à-dire que son temps d'exécution dépend uniquement de la taille de l'entier à factoriser, et non de propriétés particulières de celui-ci.
Exponentiation modulaireEn mathématiques, plus précisément en arithmétique modulaire, l’exponentiation modulaire est un type d'élévation à la puissance (exponentiation) réalisée sur des entiers modulo un entier. Elle est particulièrement utilisée en informatique, spécialement dans le domaine de la cryptologie. Etant donnés une base b, un exposant e et un entier non nul m, l'exponentiation modulaire consiste à calculer c tel que : Par exemple, si b = 5, e = 3, et m = 13, le calcul de c donne 8.
Ernst KummerErnst Eduard Kummer (1810-1893) est un mathématicien allemand. À l'âge de 3 ans, Kummer perd son père, un médecin. Il fait des études à l'université de Halle, d'abord en théologie puis en mathématiques. Il devient docteur en mathématique en 1831. Il enseigne pendant 10 ans au lycée de Liegnitz, où il a Leopold Kronecker et Ferdinand Joachimsthal comme élèves. Nommé en 1840 professeur à l'université de Breslau grâce à l'appui de Jacobi et de Dirichlet, il reprend la chaire de ce dernier à l'université de Berlin en 1855.
Nombre de Carmichaelvignette|Robert Daniel Carmichael En théorie des nombres, un nombre de Carmichael (portant le nom du mathématicien américain Robert Daniel Carmichael), ou nombre absolument pseudo-premier, est un nombre composé n qui vérifie la propriété suivante, satisfaite par tous les nombres premiers d'après le petit théorème de Fermat : pour tout entier a premier avec n, n est un diviseur de a – 1. C'est donc un nombre pseudo-premier de Fermat en toute base première avec lui (on peut d'ailleurs se restreindre aux entiers a de 2 à n – 1 dans cette définition).
Théorème de la progression arithmétiqueEn mathématiques, et plus précisément en théorie des nombres, le théorème de la progression arithmétique, s'énonce de la façon suivante : Ce théorème est une généralisation du théorème d'Euclide sur les nombres premiers. Sa première démonstration, due au mathématicien allemand Gustav Lejeune Dirichlet en 1838, fait appel aux résultats de l'arithmétique modulaire et à ceux de la théorie analytique des nombres. La première démonstration « élémentaire » est due à Atle Selberg en 1949.
Décomposition des idéaux premiers dans les extensions galoisiennesEn mathématiques, l'interaction entre le groupe de Galois G d'une extension galoisienne de corps de nombres L/K (ou de corps de nombres p-adiques, ou de corps de fonctions), et la manière dont les idéaux premiers de l'anneau O des entiers se décomposent sous forme de produits d'idéaux premiers de O, est à la base de nombreux développements fructueux en théorie algébrique des nombres. Le cas d'une extension non nécessairement galoisienne est traitée dans l'article « Décomposition des idéaux premiers ».
Pafnouti TchebychevPafnouti Lvovitch Tchebychev (en Пафнутий Львович Чебышёв), né le à Okatovo, près de Borovsk, et décédé le à Saint-Pétersbourg, est un mathématicien russe. Son nom a tout d'abord été transcrit en français Tchebychef et la forme Tchebycheff est aussi utilisée en français. Il est aussi transcrit Tschebyschef ou Tschebyscheff (formes allemandes), Chebyshov ou Chebyshev (formes anglo-saxonnes). Il est connu pour ses travaux dans les domaines des probabilités, des statistiques, et de la théorie des nombres.
Primary idealIn mathematics, specifically commutative algebra, a proper ideal Q of a commutative ring A is said to be primary if whenever xy is an element of Q then x or yn is also an element of Q, for some n > 0. For example, in the ring of integers Z, (pn) is a primary ideal if p is a prime number. The notion of primary ideals is important in commutative ring theory because every ideal of a Noetherian ring has a primary decomposition, that is, can be written as an intersection of finitely many primary ideals.