Tweedie distributionIn probability and statistics, the Tweedie distributions are a family of probability distributions which include the purely continuous normal, gamma and inverse Gaussian distributions, the purely discrete scaled Poisson distribution, and the class of compound Poisson–gamma distributions which have positive mass at zero, but are otherwise continuous. Tweedie distributions are a special case of exponential dispersion models and are often used as distributions for generalized linear models.
Suite arithmétiqueEn mathématiques, une suite arithmétique est une suite (le plus souvent une suite de réels) dans laquelle chaque terme permet de déduire le suivant en lui ajoutant une constante appelée raison. Cette définition peut s'écrire sous la forme d'une relation de récurrence, pour chaque indice n : Cette relation est caractéristique de la progression arithmétique ou croissance linéaire. Elle décrit bien les phénomènes dont la variation est constante au cours du temps, comme l'évolution d'un compte bancaire à intérêts simples.
Densité asymptotiqueEn mathématiques, et plus particulièrement en théorie des nombres, la densité asymptotique (ou densité naturelle, ou densité arithmétique) est une façon de mesurer la « taille » de certains sous-ensembles d'entiers naturels. La densité d'un ensemble peut être vue comme une approximation de la probabilité qu'un entier tiré au hasard dans un intervalle arbitrairement grand appartienne à ; son étude fait partie de la théorie analytique des nombres.
Edmund LandauEdmund Georg Hermann Landau (Berlin, - Berlin, ) est un mathématicien allemand juif, auteur de 253 publications mathématiques, en grande partie sur la théorie des nombres. Landau étudie les mathématiques à l'université de Berlin et reçoit son doctorat en 1899 et son habilitation (la qualification post-doctorale requise dans les universités allemandes) en 1901. Il enseigne à l'université de Berlin de 1899 à 1909 et conservera sa chaire à l'université de Göttingen de 1909 jusqu'à son expulsion de l'université par le régime nazi en 1933 du fait qu'il est juif.
Jacques HadamardJacques Salomon Hadamard, né le à Versailles et mort le à Paris, est un mathématicien français, connu pour ses travaux en théorie des nombres, en analyse complexe, en analyse fonctionnelle, en géométrie différentielle et en théorie des équations aux dérivées partielles. Jacques Salomon Hadamard est né, en 1865, dans une famille juive française. Son père, Amédée Hadamard (1828-1888), originaire de la Moselle, était professeur d'histoire, de grammaire et de littérature classique au lycée impérial de Versailles, puis au lycée Charlemagne à Paris.
Fonction de MertensEn théorie des nombres, la fonction de Mertens est où μ est la fonction de Möbius. Moins formellement, M(n) est le nombre d'entiers sans facteur carré inférieurs ou égaux à n et dont le nombre de facteurs premiers est pair, moins le nombre d'entiers sans facteur carré inférieurs ou égaux à n et dont le nombre de facteurs premiers est impair. Puisque la fonction de Möbius ne prend que les valeurs –1, 0 et +1, il est évident qu'il n'existe pas de x tel que |M(x)| > x.
Théorème de la progression arithmétiqueEn mathématiques, et plus précisément en théorie des nombres, le théorème de la progression arithmétique, s'énonce de la façon suivante : Ce théorème est une généralisation du théorème d'Euclide sur les nombres premiers. Sa première démonstration, due au mathématicien allemand Gustav Lejeune Dirichlet en 1838, fait appel aux résultats de l'arithmétique modulaire et à ceux de la théorie analytique des nombres. La première démonstration « élémentaire » est due à Atle Selberg en 1949.
Postulat de BertrandEn mathématiques, le postulat de Bertrand affirme qu'entre un entier et son double, il existe toujours au moins un nombre premier. Plus précisément, l'énoncé usuel est le suivant : Le postulat de Bertrand est aussi connu sous le nom de théorème de Tchebychev, depuis que Pafnouti Tchebychev l’a démontré en 1850. L'énoncé usuel du postulat de Bertrand : 1. Pour tout entier , il existe un nombre premier tel que . est équivalent aux quatre suivants : 2. Pour tout entier , il existe un nombre premier tel que . 3.
Biais de TchebychevEn mathématiques, et plus particulièrement en théorie des nombres, le biais de Tchebychev est la remarque selon laquelle, la plupart du temps, il y a plus de nombres premiers de la forme 4k + 3 que de la forme 4k + 1. Ce phénomène fut remarqué pour la première fois par Pafnouti Tchebychev en 1853, mais il n'en existe pas encore de démonstration rigoureuse. Soit π(x; 4, 1) (respectivement π(x; 4, 3)) le nombre de nombres premiers de la forme 4k + 1 (respectivement 4k + 3) inférieurs à x.
Formule de PerronEn mathématiques, et plus particulièrement en théorie analytique des nombres, la formule de Perron est une formule d'Oskar Perron pour calculer la fonction sommatoire () d'une fonction arithmétique, au moyen d'une transformation de Mellin inverse de la série de Dirichlet associée. Soient (a(n)) une fonction arithmétique etoù l'étoile sur le symbole de sommation indique que le dernier terme doit être multiplié par 1/2 quand x est entier.Nous supposons que la série de Dirichlet classique admet une abscisse de convergence simple finie σ.