Godfrey Harold HardyGodfrey Harold Hardy est un mathématicien britannique, né le à Cranleigh (comté de Surrey) et mort le à Cambridge. Il est lauréat de la médaille Sylvester en 1940 et de la médaille Copley en 1947 ; il est connu pour ses travaux en théorie des nombres et en analyse.
Fonction arithmétiqueEn théorie des nombres, une fonction arithmétique f est une application définie sur l'ensemble des entiers strictement positifs et à valeurs dans l'ensemble des nombres complexes. En d'autres termes, une fonction arithmétique n'est rien d'autre qu'une suite de nombres complexes, indexée par N*. Les fonctions arithmétiques les plus étudiées sont les fonctions additives et les fonctions multiplicatives. Une opération importante sur les fonctions arithmétiques est le produit de convolution de Dirichlet.
Presque tousEn mathématiques, le terme « presque tous » signifie « tous sauf une quantité négligeable ». Plus précisément, si est un ensemble, « presque tous les éléments de » signifie « tous les éléments de à l'exception de ceux d'un sous-ensemble négligeable de ». La signification de « négligeable » dépend du contexte mathématique : par exemple, cela peut signifier fini, dénombrable ou de mesure nulle . En revanche, " presque aucun " signifie "un montant négligeable"; c'est-à-dire "presque aucun élément de " signifie "une quantité négligeable d'éléments de ".
John Edensor LittlewoodJohn Edensor Littlewood (Rochester (Kent), – Cambridge, ) est un mathématicien britannique. Littlewood naît en 1885 à Rochester, Kent, il est le fils aîné d'Edward Thornton Littlewood et Sylvia Maud (née Ackland). En 1892, son père accepte le poste de directeur d'une école à Wynberg, au Cap, en Afrique du Sud, et y emmène sa famille. Littlewood revient en Angleterre en 1900 pour entrer à la St Paul's School, où il devient étudiant de l'influent géomètre algébrique Francis Sowerby Macaulay.
Comparaison asymptotiqueEn mathématiques, plus précisément en analyse, la comparaison asymptotique est une méthode consistant à étudier la vitesse de croissance d'une fonction au voisinage d'un point ou à l'infini, en la comparant à celle d'une autre fonction considérée comme plus « simple ». Celle-ci est souvent choisie sur une échelle de référence, contenant en général au moins certaines fonctions dites élémentaires, en particulier les sommes et produits de polynômes, d'exponentielles et de logarithmes.
Fonction de Tchebychevvignette|La fonction de Tchebychev ψ(x) pour x < 50 En mathématiques, la fonction de Tchebychev peut désigner deux fonctions utilisées en théorie des nombres. La première fonction de Tchebychev θ(x) ou θ(x) est donnée par où la somme est définie sur les nombres premiers p inférieurs ou égaux à x. La seconde fonction de Tchebychev ψ(x) est définie de façon similaire, la somme s'étendant aux puissances premières inférieures à x : où Λ désigne la fonction de von Mangoldt.
Pafnouti TchebychevPafnouti Lvovitch Tchebychev (en Пафнутий Львович Чебышёв), né le à Okatovo, près de Borovsk, et décédé le à Saint-Pétersbourg, est un mathématicien russe. Son nom a tout d'abord été transcrit en français Tchebychef et la forme Tchebycheff est aussi utilisée en français. Il est aussi transcrit Tschebyschef ou Tschebyscheff (formes allemandes), Chebyshov ou Chebyshev (formes anglo-saxonnes). Il est connu pour ses travaux dans les domaines des probabilités, des statistiques, et de la théorie des nombres.
Nombre de SkewesEn mathématiques, plus précisément en théorie des nombres, le nombre de Skewes fait référence à plusieurs nombres extrêmement grands utilisés par le mathématicien sud-africain Stanley Skewes. Ces nombres sont des majorants du plus petit nombre naturel x pour lequel où π est la fonction de compte des nombres premiers et li le logarithme intégral. John Edensor Littlewood, professeur de Skewes, avait démontré en 1914 qu'il existe de tels nombres (et donc, un plus petit parmi eux) et trouvé que la différence π(x) – li(x) change de signe une infinité de fois.
Logarithme intégralEn mathématiques, le logarithme intégral li est une fonction spéciale définie en tout nombre réel strictement positif x ≠ 1 par l'intégrale : où ln désigne le logarithme népérien. La fonction n'est pas définie en t = 1, et l'intégrale pour x > 1 doit être interprétée comme la valeur principale de Cauchy : Quand x tend vers +∞, on a l'équivalence c'est-à-dire que D'après le théorème des nombres premiers, la fonction de compte des nombres premiers π(x) est équivalente à x/ln(x), donc à li(x), qui en fournit par ailleurs une meilleure approximation.
Sur le nombre de nombres premiers inférieurs à une taille donnéeSur le nombre de nombres premiers inférieurs à une taille donnée (titre original, en allemand : Über die Anzahl der Primzahlen unter einer gegebenen Grösse) est un article de 8 pages écrit par Bernhard Riemann et publié dans l'édition de novembre 1859 des Rapports mensuels de l'Académie de Berlin. Bien que ce soit le seul article qu'il ait publié sur la théorie des nombres, il contient des idées qui ont influencé des milliers de chercheurs depuis la fin du jusqu'à nos jours, en particulier la formulation de ce qu'on appelle désormais l'hypothèse de Riemann.