Concepts associés (20)
Problèmes de Hilbert
Lors du deuxième congrès international des mathématiciens, tenu à Paris en août 1900, David Hilbert entendait rivaliser avec le maître des mathématiques françaises, Henri Poincaré, et prouver qu'il était de la même étoffe. Il présenta une liste de problèmes qui tenaient jusqu'alors les mathématiciens en échec. Ces problèmes devaient, selon Hilbert, marquer le cours des mathématiques du , et l'on peut dire aujourd'hui que cela a été grandement le cas.
Homotopie
En mathématiques, une homotopie est une déformation continue entre deux applications, notamment entre les chemins à extrémités fixées et en particulier les lacets. Cette notion topologique permet de définir des invariants algébriques utilisés pour classifier les applications continues entre espaces topologiques dans le cadre de la topologie algébrique. L’homotopie induit une relation d'équivalence sur les applications continues, compatible avec la composition, qui mène à la définition de l’équivalence d'homotopie entre espaces topologiques.
4-manifold
In mathematics, a 4-manifold is a 4-dimensional topological manifold. A smooth 4-manifold is a 4-manifold with a smooth structure. In dimension four, in marked contrast with lower dimensions, topological and smooth manifolds are quite different. There exist some topological 4-manifolds which admit no smooth structure, and even if there exists a smooth structure, it need not be unique (i.e. there are smooth 4-manifolds which are homeomorphic but not diffeomorphic).
Sphère d'homologie
En topologie algébrique, une sphère d'homologie (ou encore, sphère d'homologie entière) est une variété X de dimension n ≥ 1 qui a les mêmes groupes d'homologie que la n-sphère standard S, à savoir : H0(X,Z) = Z = Hn(X,Z) et Hi(X,Z) = {0} pour tout autre entier i. Une telle variété X est donc connexe, fermée (i.e. compacte et sans bord), orientable, et avec (à part b0 = 1) un seul nombre de Betti non nul : bn. Les sphères d'homologie rationnelle sont définies de façon analogue, avec l'homologie à coefficients rationnels.
Surface (topology)
In the part of mathematics referred to as topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solid figures; for example, the sphere is the boundary of the solid ball. Other surfaces arise as graphs of functions of two variables; see the figure at right. However, surfaces can also be defined abstractly, without reference to any ambient space. For example, the Klein bottle is a surface that cannot be embedded in three-dimensional Euclidean space.
K-théorie algébrique
En mathématiques, la K-théorie algébrique est une branche importante de l'algèbre homologique. Son objet est de définir et d'appliquer une suite de foncteurs K de la catégorie des anneaux dans celle des groupes abéliens. Pour des raisons historiques, K et K sont conçus en des termes un peu différents des K pour n ≥ 2. Ces deux K-groupes sont en effet plus accessibles et ont plus d'applications que ceux d'indices supérieurs. La théorie de ces derniers est bien plus profonde et ils sont beaucoup plus difficiles à calculer, ne serait-ce que pour l'anneau des entiers.
Sphère exotique
En mathématiques, et plus précisément en topologie différentielle, une sphère exotique est une variété différentielle M qui est homéomorphe, mais non difféomorphe, à la n-sphère euclidienne standard. Autrement dit, M est une sphère du point de vue de ses propriétés topologiques, mais sa structure différentielle (qui définit, par exemple, la notion de vecteur tangent) n'est pas la structure usuelle, d'où l'adjectif « exotique ». La n-sphère unité, Sn, est l'ensemble de tous les n+1-uplets (x1, x2, ...
Homotopy sphere
In algebraic topology, a branch of mathematics, a homotopy sphere is an n-manifold that is homotopy equivalent to the n-sphere. It thus has the same homotopy groups and the same homology groups as the n-sphere, and so every homotopy sphere is necessarily a homology sphere. The topological generalized Poincaré conjecture is that any n-dimensional homotopy sphere is homeomorphic to the n-sphere; it was solved by Stephen Smale in dimensions five and higher, by Michael Freedman in dimension 4, and for dimension 3 (the original Poincaré conjecture) by Grigori Perelman in 2005.
Problèmes du prix du millénaire
Les problèmes du prix du millénaire sont un ensemble de sept défis mathématiques réputés insurmontables, posés par l'Institut de mathématiques Clay en . La résolution de chacun des problèmes est dotée d'un prix d'un million de dollars américains offert par l'institut Clay. En , six des sept problèmes demeurent non résolus. Chacun des défis consiste à : soit démontrer, soit infirmer, une hypothèse ou une conjecture qui n'a été ni confirmée ni rejetée faute d'une démonstration mathématique suffisamment rigoureuse ; soit définir et expliciter l'ensemble des solutions de certaines équations.
Théorème de plongement de Whitney
En géométrie différentielle, le théorème de plongement de Whitney fait le lien entre les notions de variété abstraite et de sous-variété de l'espace vectoriel réel Rn : toute variété différentielle de dimension m (à base dénombrable par définition) se plonge dans l'espace euclidien de dimension 2m. Cette valeur 2m peut bien sûr être diminuée dans certains exemples particuliers, comme la sphère. Mais pour l'exemple de l'espace projectif réel de dimension m = 2, la constante 2m est optimale.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.