Identity componentIn mathematics, specifically group theory, the identity component of a group G refers to several closely related notions of the largest connected subgroup of G containing the identity element. In point set topology, the identity component of a topological group G is the connected component G0 of G that contains the identity element of the group. The identity path component of a topological group G is the path component of G that contains the identity element of the group.
Cohomologie galoisienneEn mathématiques, la cohomologie galoisienne est l'étude de l'action d'un groupe de Galois sur certains groupes, par des méthodes cohomologiques. Elle permet d'obtenir des résultats à la fois sur le groupe de Galois agissant, et sur le groupe sur lequel il agit. En particulier, le groupe de Galois d'une extension de corps de nombres L/K agit naturellement par exemple sur le groupe multiplicatif L, mais aussi sur le groupe des unités de l'anneau des entiers du corps L, ou sur son groupe des classes.
Poids (théorie des représentations)Dans le domaine mathématique de la théorie des représentations, un poids d'une algèbre A sur un corps F est un morphisme d'algèbres de A vers F ou, de manière équivalente, une représentation de dimension un de A sur F. C'est l'analogue algébrique d'un caractère multiplicatif d'un groupe. L'importance du concept découle cependant de son application aux représentations des algèbres de Lie et donc aussi aux représentations des groupes algébriques et des groupes de Lie.
Claude ChevalleyClaude Chevalley, né le à Johannesbourg (Afrique du Sud) et mort le à Paris, est un mathématicien français spécialiste de l'algèbre et un des fondateurs du groupe Bourbaki. Fils du diplomate Français Abel Chevalley et de Marguerite Sabatier, petit-fils du théologien Auguste Sabatier, il fait sa scolarité primaire à Chançay (Indre-et-Loire) et ses études secondaires au lycée Louis-le-Grand à Paris. En 1926, il est admis à l'École normale supérieure, où il suit les cours d'Émile Picard et, en 1929, est reçu troisième à l'agrégation de mathématiques.
Groupe de LieEn mathématiques, un groupe de Lie est un groupe qui est aussi une variété différentielle. D'une part, un groupe est une structure algébrique munie d'une opération binaire, typiquement une multiplication et son inverse la division, ou alors une addition et son inverse la soustraction. D'autre part, une variété est un espace qui localement ressemble à un espace euclidien. Ici, on s'intéresse à un ensemble qui est à la fois un groupe et une variété : nous pouvons multiplier les éléments entre eux, calculer l'inverse d'un élément.
Groupe spécial linéaireEn mathématiques, le groupe spécial linéaire de degré n sur un corps commutatif K est le groupe SL(K) des matrices carrées d'ordre n sur K dont le déterminant est égal à 1. Plus intrinsèquement, le groupe spécial linéaire d'un espace vectoriel E de dimension finie sur K est le groupe SL(E) des éléments du groupe général linéaire GL(E) dont le déterminant est égal à 1. Cette définition admet différentes généralisations : une, immédiate, sur un anneau commutatif et deux variantes sur des corps non nécessairement commutatifs, dont l'une sur des corps qui sont de dimension finie sur leur centre.
Algèbre de HopfEn mathématiques, une algèbre de Hopf, du nom du mathématicien Heinz Hopf, est une bialgèbre qui possède en plus une opération (l'antipode) qui généralise la notion de passage à l'inverse dans un groupe. Ces algèbres ont été introduites à l'origine pour étudier la cohomologie des groupes de Lie. Les algèbres de Hopf interviennent également en topologie algébrique, en théorie des groupes et dans bien d'autres domaines. Enfin, ce qu'on appelle les groupes quantiques sont souvent des algèbres de Hopf « déformées » et qui ne sont en général ni commutatives, ni cocommutatives.
Automorphisme intérieurUn automorphisme intérieur est une notion mathématique utilisée en théorie des groupes. Soient G un groupe et g un élément de G. On appelle automorphisme intérieur associé à g, noté ιg, l'automorphisme de G défini par : Pour un groupe abélien, les automorphismes intérieurs sont triviaux. Plus généralement, l'ensemble des automorphismes intérieurs de G forme un sous-groupe normal du groupe des automorphismes de G, et ce sous-groupe est isomorphe au groupe quotient de G par son centre.
Adelic algebraic groupIn abstract algebra, an adelic algebraic group is a semitopological group defined by an algebraic group G over a number field K, and the adele ring A = A(K) of K. It consists of the points of G having values in A; the definition of the appropriate topology is straightforward only in case G is a linear algebraic group. In the case of G being an abelian variety, it presents a technical obstacle, though it is known that the concept is potentially useful in connection with Tamagawa numbers.
Levi decompositionIn Lie theory and representation theory, the Levi decomposition, conjectured by Wilhelm Killing and Élie Cartan and proved by , states that any finite-dimensional real{Change real Lie algebra to a Lie algebra over a field of characterisitic 0} Lie algebra g is the semidirect product of a solvable ideal and a semisimple subalgebra. One is its radical, a maximal solvable ideal, and the other is a semisimple subalgebra, called a Levi subalgebra.