Couvre les espaces normés, les espaces doubles, les espaces de Banach, les espaces de Hilbert, la convergence faible et forte, les espaces réflexifs et le théorème de Hahn-Banach.
Explore les opérateurs linéaires, les limites et la convergence dans les espaces de Banach, en se concentrant sur les séquences de Cauchy et l'identification des opérateurs.
Introduit l'analyse fonctionnelle, la théorie de la distribution, les espaces vectoriels topologiques et les opérateurs linéaires, soulignant leur importance dans les applications d'ingénierie.
Explore la généralisation de l'apprentissage automatique, en mettant l'accent sur les compromis sous-équipés et sur-équipés, les cadres enseignant-étudiant et l'impact des caractéristiques aléatoires sur les performances du modèle.