Droite projectiveEn géométrie, une droite projective est un espace projectif de dimension 1. En première approche (en oubliant sa structure géométrique), la droite projective sur un corps , notée , peut être définie comme l'ensemble des droites vectorielles du plan vectoriel . Cet ensemble s'identifie à la droite à laquelle on ajoute un point à l'infini. La notion de droite projective se généralise en remplaçant le corps par un anneau. Une droite vectorielle de , et donc un point de la droite projective , est définie par un point de cette droite autre que l'origine.
AsymptoteLe terme d'asymptote (prononciation : ) est utilisé en mathématiques pour préciser des propriétés éventuelles d'une branche infinie de courbe à accroissement tendant vers l'infinitésimal. C'est d'abord un adjectif d'étymologie grecque qui peut qualifier une droite, un cercle, un point... dont une courbe plus complexe peut se rapprocher. C'est aussi devenu un nom féminin synonyme de droite asymptote. Une droite asymptote à une courbe est une droite telle que, lorsque l'abscisse ou l'ordonnée tend vers l'infini, la distance de la courbe à la droite tend vers 0.
Point singulier d'une courbeEn géométrie, un point singulier d'une courbe est un point en lequel la courbe ne peut être paramétrée par un plongement lisse. Les définitions plus précises du point singulier d'une courbe dépendent du type de courbe concernée. Les courbes algébriques planes peuvent être définies comme étant un ensemble de points qui satisfont une équation de la forme où est une fonction polynomiale. Supposons est développée sous la forme : et si l'origine (0, 0) est sur la courbe, alors .
Fonction impliciteEn mathématiques, une équation entre différentes variables où une variable n'est pas explicitée en fonction des autres est appelée une équation implicite. Une fonction implicite est une fonction qui se déduit implicitement d'une telle équation. Plus précisément si f est une fonction de E × F dans G, où E, F et G sont des espaces vectoriels normés ou plus simplement des intervalles de R, l'équation f(x,y) = 0 définit une fonction implicite si l'on peut exprimer une des variables en fonction de l'autre pour tous les couples (x,y) vérifiant l'équation.
Variété jacobienneEn géométrie algébrique, la jacobienne d'une courbe est une variété algébrique (en fait une variété abélienne) qui paramètrise les diviseurs de degré 0 sur . C'est un objet fondamental pour l'étude des courbes, et c'est aussi un exemple de variété abélienne qui sert de variété test. On fixe une courbe algébrique projective lisse de genre au moins 1 sur un corps . Dans une première approximation, on peut dire que sa jacobienne est une variété algébrique dont les points correspondent aux diviseurs de degré 0 sur modulo équivalence rationnelle.
Point de rebroussementEn mathématiques, on appelle point de rebroussement, fronce (selon René Thom) ou parfois , selon la terminologie anglaise, un type particulier de point singulier sur une courbe. Dans le cas d'une courbe admettant une équation , les points de rebroussement ont les propriétés : La matrice hessienne (la matrice des dérivées secondes) a un déterminant nul. L'étude de la géométrie d'une courbe, algébrique ou analytique, au voisinage d'un tel point, repose notamment sur la notion d'éclatement.
Fano varietyIn algebraic geometry, a Fano variety, introduced by Gino Fano in , is a complete variety X whose anticanonical bundle KX* is ample. In this definition, one could assume that X is smooth over a field, but the minimal model program has also led to the study of Fano varieties with various types of singularities, such as terminal or klt singularities. Recently techniques in differential geometry have been applied to the study of Fano varieties over the complex numbers, and success has been found in constructing moduli spaces of Fano varieties and proving the existence of Kähler–Einstein metrics on them through the study of K-stability of Fano varieties.
Projection (mathematics)In mathematics, a projection is an idempotent mapping of a set (or other mathematical structure) into a subset (or sub-structure). In this case, idempotent means that projecting twice is the same as projecting once. The restriction to a subspace of a projection is also called a projection, even if the idempotence property is lost. An everyday example of a projection is the casting of shadows onto a plane (sheet of paper): the projection of a point is its shadow on the sheet of paper, and the projection (shadow) of a point on the sheet of paper is that point itself (idempotency).
Courbe hyperelliptiquedroite|vignette|Une courbe hyperelliptique, d'équation En géométrie algébrique, une courbe hyperelliptique est un cas particulier de courbe algébrique de genre g > 1 donnée par une équation de la forme : où f(x) est un polynôme de degré n = 2g + 1 > 4 ou avec n = 2g + 2 > 4 racines distinctes et h(x) est un polynôme de degré strictement inférieur à g + 2 (si la caractéristique du corps commutatif n'est pas 2, on peut prendre h(x) = 0).
Courbe cubiqueEn mathématiques, une courbe cubique est une courbe algébrique plane définie par une équation du troisième degré en les coordonnées homogènes [X:Y:Z] du plan projectif ; ou bien c'est la version non homogène pour l'espace affine obtenue en faisant Z = 1 dans une telle équation. Ici F est une combinaison linéaire non nulle des monômes de degré trois X3, X2Y, ..., Z3 en X,Y et Z. Ceux-ci sont au nombre de dix ; donc les courbes cubiques forment un espace projectif de dimension 9, au-dessus de n'importe quel corps commutatif K donné.