Prime zeta functionIn mathematics, the prime zeta function is an analogue of the Riemann zeta function, studied by . It is defined as the following infinite series, which converges for : The Euler product for the Riemann zeta function ζ(s) implies that which by Möbius inversion gives When s goes to 1, we have . This is used in the definition of Dirichlet density. This gives the continuation of P(s) to , with an infinite number of logarithmic singularities at points s where ns is a pole (only ns = 1 when n is a squarefree number greater than or equal to 1), or zero of the Riemann zeta function ζ(.
Roger ApéryRoger Apéry (Rouen, – Caen, ) est un mathématicien français de mère française et de père grec qui a effectué la plus grande partie de sa carrière à l'université de Caen. Il est principalement connu pour avoir démontré l'irrationalité de . Après des études au lycée Faidherbe de Lille et au lycée Louis-le-Grand, il est reçu second à l'École normale supérieure (ENS) en 1936. Quelques années plus tard il est premier (ex-aequo avec Jacqueline Ferrand) à l'agrégation de mathématiques.
Constante d'Euler-MascheroniEn mathématiques, la constante d'Euler-Mascheroni, ou constante d'Euler, est une constante mathématique définie comme la limite de la différence entre la série harmonique et le logarithme naturel. On la note usuellement (gamma minuscule). La constante d'Euler-Mascheroni γ est définie de la manière suivante : De façon condensée, on obtient : La constante peut également être définie sous la forme explicite d'une série (telle qu'elle fut d'ailleurs introduite par Euler) : La série harmonique diverge, tout comme la suite de terme général ln(n) ; l'existence de cette constante indique que les deux expressions sont asymptotiquement liées.
Densité asymptotiqueEn mathématiques, et plus particulièrement en théorie des nombres, la densité asymptotique (ou densité naturelle, ou densité arithmétique) est une façon de mesurer la « taille » de certains sous-ensembles d'entiers naturels. La densité d'un ensemble peut être vue comme une approximation de la probabilité qu'un entier tiré au hasard dans un intervalle arbitrairement grand appartienne à ; son étude fait partie de la théorie analytique des nombres.
Fonction totient de JordanEn théorie des nombres, la k-ième fonction totient de Jordan J — nommée d'après le mathématicien Camille Jordan — est la fonction arithmétique qui à tout entier n > 0 associe le nombre de k-uplets d'entiers compris entre 1 et n qui, joints à n, forment un k + 1-uplet de nombres premiers entre eux. C'est une généralisation de la fonction φ d'Euler, qui est J. La fonction J est multiplicative et vaut où le produit est indexé par tous les diviseurs premiers p de n.
Série zêta rationnelleEn mathématiques, une série zêta rationnelle est la représentation d'un nombre réel arbitraire en termes d'une série constituée de nombres rationnels et de la fonction zêta de Riemann ou de la fonction zêta de Hurwitz. Plus précisément, pour un nombre réel donné x, la série zêta rationnelle pour x est donnée par où q est un nombre rationnel, la valeur m reste fixée et ζ(s, m) est la fonction zêta de Hurwitz. Il n'est pas difficile de montrer que tout nombre réel x peut être développé de cette manière.
Jacques HadamardJacques Salomon Hadamard, né le à Versailles et mort le à Paris, est un mathématicien français, connu pour ses travaux en théorie des nombres, en analyse complexe, en analyse fonctionnelle, en géométrie différentielle et en théorie des équations aux dérivées partielles. Jacques Salomon Hadamard est né, en 1865, dans une famille juive française. Son père, Amédée Hadamard (1828-1888), originaire de la Moselle, était professeur d'histoire, de grammaire et de littérature classique au lycée impérial de Versailles, puis au lycée Charlemagne à Paris.
Loi de ZipfLa loi de Zipf est une observation empirique concernant la fréquence des mots dans un texte. Elle a pris le nom de son auteur, George Kingsley Zipf (1902-1950). Cette loi a d'abord été formulée par Jean-Baptiste Estoup et a été par la suite démontrée à partir de formules de Shannon par Benoît Mandelbrot. Elle est parfois utilisée en dehors de ce contexte, par exemple au sujet de la taille et du nombre des villes dans chaque pays, lorsque cette loi semble mieux répondre aux chiffres que la distribution de Pareto.
Formule sommatoire de PoissonLa formule sommatoire de Poisson (parfois appelée resommation de Poisson) est une identité entre deux sommes infinies, la première construite avec une fonction , la seconde avec sa transformée de Fourier . Ici, f est une fonction sur la droite réelle ou plus généralement sur un espace euclidien. La formule a été découverte par Siméon Denis Poisson. Elle, et ses généralisations, sont importantes dans plusieurs domaines des mathématiques, dont la théorie des nombres, l'analyse harmonique, et la géométrie riemannienne.
Essential singularityIn complex analysis, an essential singularity of a function is a "severe" singularity near which the function exhibits odd behavior. The category essential singularity is a "left-over" or default group of isolated singularities that are especially unmanageable: by definition they fit into neither of the other two categories of singularity that may be dealt with in some manner – removable singularities and poles. In practice some include non-isolated singularities too; those do not have a residue.