Pafnouti TchebychevPafnouti Lvovitch Tchebychev (en Пафнутий Львович Чебышёв), né le à Okatovo, près de Borovsk, et décédé le à Saint-Pétersbourg, est un mathématicien russe. Son nom a tout d'abord été transcrit en français Tchebychef et la forme Tchebycheff est aussi utilisée en français. Il est aussi transcrit Tschebyschef ou Tschebyscheff (formes allemandes), Chebyshov ou Chebyshev (formes anglo-saxonnes). Il est connu pour ses travaux dans les domaines des probabilités, des statistiques, et de la théorie des nombres.
Reflection formulaIn mathematics, a reflection formula or reflection relation for a function f is a relationship between f(a − x) and f(x). It is a special case of a functional equation, and it is very common in the literature to use the term "functional equation" when "reflection formula" is meant. Reflection formulas are useful for numerical computation of special functions. In effect, an approximation that has greater accuracy or only converges on one side of a reflection point (typically in the positive half of the complex plane) can be employed for all arguments.
Convolution de DirichletEn mathématiques, la convolution de Dirichlet, encore appelée produit de convolution de Dirichlet ou produit de Dirichlet est une loi de composition interne définie sur l'ensemble des fonctions arithmétiques, c'est-à-dire des fonctions définies sur les entiers strictement positifs et à valeurs dans les nombres complexes. Cette loi de convolution est utilisée en arithmétique, aussi bien algébrique qu'analytique. On la trouve aussi pour résoudre des questions de dénombrement.
Sums of powersIn mathematics and statistics, sums of powers occur in a number of contexts: Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities. Faulhaber's formula expresses as a polynomial in n, or alternatively in terms of a Bernoulli polynomial.
Comparaison série-intégraleLes séries sont un procédé de sommation de grandeurs discrètes, l'intégrale de grandeurs continues. L'analogie formelle entre les deux domaines permet de faire passer des idées intéressantes de l'une à l'autre. La comparaison explicite d'une intégrale et d'une série associées permet par exemple d'utiliser l'une pour avoir des valeurs approchées de l'autre. À partir de la série numérique de terme général un, on fabrique une fonction constante par morceaux f, définie par f(x) = un pour x dans [n, n+1[.
Nombre de SkewesEn mathématiques, plus précisément en théorie des nombres, le nombre de Skewes fait référence à plusieurs nombres extrêmement grands utilisés par le mathématicien sud-africain Stanley Skewes. Ces nombres sont des majorants du plus petit nombre naturel x pour lequel où π est la fonction de compte des nombres premiers et li le logarithme intégral. John Edensor Littlewood, professeur de Skewes, avait démontré en 1914 qu'il existe de tels nombres (et donc, un plus petit parmi eux) et trouvé que la différence π(x) – li(x) change de signe une infinité de fois.
Fonction de Tchebychevvignette|La fonction de Tchebychev ψ(x) pour x < 50 En mathématiques, la fonction de Tchebychev peut désigner deux fonctions utilisées en théorie des nombres. La première fonction de Tchebychev θ(x) ou θ(x) est donnée par où la somme est définie sur les nombres premiers p inférieurs ou égaux à x. La seconde fonction de Tchebychev ψ(x) est définie de façon similaire, la somme s'étendant aux puissances premières inférieures à x : où Λ désigne la fonction de von Mangoldt.
Polynôme de BernoulliEn mathématiques, les polynômes de Bernoulli apparaissent dans l'étude de beaucoup de fonctions spéciales et en particulier, la fonction zêta de Riemann ; des polynômes analogues, correspondant à une fonction génératrice voisine, sont connus sous le nom de polynômes d'Euler. Les polynômes de Bernoulli sont l'unique suite de polynômes telle que : La fonction génératrice pour les polynômes de Bernoulli est La fonction génératrice pour les polynômes d'Euler est Les nombres de Bernoulli sont donnés par .