Série convergenteEn mathématiques, une série est dite convergente si la suite de ses sommes partielles a une limite dans l'espace considéré. Dans le cas contraire, elle est dite divergente. Pour des séries numériques, ou à valeurs dans un espace de Banach — c'est-à-dire un espace vectoriel normé complet —, il suffit de prouver la convergence absolue de la série pour montrer sa convergence, ce qui permet de se ramener à une série à termes réels positifs. Pour étudier ces dernières, il existe une large variété de résultats, tous fondés sur le principe de comparaison.
Théorème de réarrangement de RiemannEn mathématiques, le théorème de réarrangement de Riemann est un théorème, nommé en l'honneur du mathématicien Bernhard Riemann, d'après lequel si une série à termes réels est semi-convergente, alors on peut réarranger ses termes pour qu'elle converge vers n'importe quel réel, ou bien tende vers plus ou moins l'infini. Il en résulte que dans R, toute série inconditionnellement convergente est absolument convergente (autrement dit : toute famille sommable est absolument sommable).
Fonction numériquevignette|Trois fonctions numériques représentant les précipitations, la température minimale et la température maximale au long de l'année à Brest En mathématiques, une fonction numérique est une fonction à valeurs réelles, c'est-à-dire qu'elle associe à toute valeur possible de ses variables un résultat numérique. Le terme est souvent employé pour désigner une fonction réelle d'une variable réelle, notamment dans l'enseignement secondaire, mais il recouvre aussi les notions de fonction de plusieurs variables ou de fonctions définies sur d’autres espaces topologiques comme les variétés différentiables, ou sur des structures discrètes comme les graphes.
Théorème des gendarmesthumb|upright=1.5|Deux fonctions et qui admettent la même limite au point , et une fonction prise en « étau » entre et dans le voisinage de . Selon le théorème du sandwich, admet comme limite en . En analyse, le théorème des gendarmes (également appelé théorème de l'étau, théorème d'encadrement ou théorème du sandwich) est un théorème concernant la limite d'une fonction. Selon ce théorème, si deux fonctions ( et ) admettent la même limite en un point , et qu'une troisième fonction est prise en « étau » (ou « encadrée » ou « prise en sandwich ») entre et dans le voisinage de , alors admet en une limite, égale à la limite commune de et .
Smooth infinitesimal analysisSmooth infinitesimal analysis is a modern reformulation of the calculus in terms of infinitesimals. Based on the ideas of F. W. Lawvere and employing the methods of , it views all functions as being continuous and incapable of being expressed in terms of discrete entities. As a theory, it is a subset of synthetic differential geometry. The nilsquare or nilpotent infinitesimals are numbers ε where ε2 = 0 is true, but ε = 0 need not be true at the same time.
Cours d'Analysevignette| Page de titre Cours d'Analyse de l'École Royale Polytechnique ; Ière partie. Analyse algébrique est un manuel fondateur du calcul infinitésimal publié par Augustin-Louis Cauchy en 1821. Il reprend une partie du cours d'analyse de année dispensé à l'Ecole polytechnique, et a participé à la réputation du mathématicien et de l'école. À la page 1 de l'Introduction, Cauchy écrit : Cauchy poursuit : À la page 4, Cauchy discute d'abord des grandeurs variables, puis introduit la notion de limite dans les termes suivants : Plus bas sur la même page, Cauchy définit un infinitésimal comme suit : Cauchy ajoute : La notation est présentée à la page 13.
Limite supérieure et limite inférieurevignette|upright=1.8|Exemple de recherche de limites inférieure et supérieure. La suite (x) est représentée en bleu. En mathématiques, plus précisément en analyse réelle, les limites inférieures et supérieures sont des outils d'étude des suites de nombres réels. Une telle suite n'est en général ni monotone, ni convergente. L'introduction des limites supérieure et inférieure permet de retrouver, partiellement, de telles propriétés. Il s'agit d'un cas particulier de valeurs d'adhérence de la suite.
Oscillation (mathématiques)L'oscillation quantifie la tendance d'une fonction ou d'une suite à varier entre des valeurs extrémales. Il existe plusieurs notions d'oscillation : oscillation d'une suite de réels, oscillation d'une fonction à valeurs dans un espace métrique (comme R), en un point ou sur une partie de son domaine de définition. right|thumb|L'oscillation d'une suite (représentée en bleu) est la différence entre ses limites supérieure et inférieure.
Limit setIn mathematics, especially in the study of dynamical systems, a limit set is the state a dynamical system reaches after an infinite amount of time has passed, by either going forward or backwards in time. Limit sets are important because they can be used to understand the long term behavior of a dynamical system. A system that has reached its limiting set is said to be at equilibrium.
Convergence absolueEn mathématiques, une série numérique réelle ou complexe converge absolument si, par définition, la série des valeurs absolues (ou des modules) est convergente. Cette définition peut être étendue aux séries à valeurs dans un espace vectoriel normé et complet, soit un espace de Banach. Dans tous ces contextes, cette condition est suffisante pour assurer la convergence de la série elle-même. Par analogie, l'intégrale d'une fonction à valeurs réelles ou complexes converge absolument si, par définition, l'intégrale de la valeur absolue (ou du module) de la fonction est convergente (fonction dans L1).