Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'analyse de régression pour les données de désassemblage à l'aide de la modélisation de régression linéaire, des transformations, des interprétations des coefficients et des modèles linéaires généralisés.
Couvre l'inférence, la construction de modèles, la sélection de variables, la robustesse, la régression régularisée, les modèles mixtes et les méthodes de régression.
Se penche sur l'analyse de la consommation d'oxygène, couvrant la régression, l'interprétation des erreurs et l'application du modèle Michaelis-Menten.
Couvre l'analyse de la variance, de la construction du modèle, de la sélection des variables et de l'estimation des fonctions dans les méthodes de régression.
Couvre les principes de régression de mélange gaussien, la modélisation des densités articulaires et conditionnelles pour les ensembles de données multimodaux.
Couvre les moindres carrés pondérés itératifs, la régression de Poisson et l'analyse bayésienne des données sur l'orge de printemps à l'aide de modèles mixtes.