Nome (mathematics)In mathematics, specifically the theory of elliptic functions, the nome is a special function that belongs to the non-elementary functions. This function is of great importance in the description of the elliptic functions, especially in the description of the modular identity of the Jacobi theta function, the Hermite elliptic transcendents and the Weber modular functions, that are used for solving equations of higher degrees. The nome function is given by where and are the quarter periods, and and are the fundamental pair of periods, and is the half-period ratio.
Quarter periodIn mathematics, the quarter periods K(m) and iK ′(m) are special functions that appear in the theory of elliptic functions. The quarter periods K and iK ′ are given by and When m is a real number, 0 < m < 1, then both K and K ′ are real numbers. By convention, K is called the real quarter period and iK ′ is called the imaginary quarter period. Any one of the numbers m, K, K ′, or K ′/K uniquely determines the others.
Fundamental pair of periodsIn mathematics, a fundamental pair of periods is an ordered pair of complex numbers that defines a lattice in the complex plane. This type of lattice is the underlying object with which elliptic functions and modular forms are defined. A fundamental pair of periods is a pair of complex numbers such that their ratio is not real. If considered as vectors in , the two are not collinear. The lattice generated by and is This lattice is also sometimes denoted as to make clear that it depends on and It is also sometimes denoted by or or simply by The two generators and are called the lattice basis.
Weber modular functionIn mathematics, the Weber modular functions are a family of three functions f, f1, and f2, studied by Heinrich Martin Weber. Let where τ is an element of the upper half-plane. Then the Weber functions are These are also the definitions in Duke's paper "Continued Fractions and Modular Functions". The function is the Dedekind eta function and should be interpreted as . The descriptions as quotients immediately imply The transformation τ → –1/τ fixes f and exchanges f1 and f2.
Fonction lemniscatiqueEn mathématiques, les fonctions lemniscatiques sont des fonctions elliptiques liées à la longueur d'arc d'une lemniscate de Bernoulli ; ces fonctions ont beaucoup d'analogies avec les fonctions trigonométriques. Elles ont été étudiées par Giulio Fagnano en 1718 ; leur analyse approfondie, et en particulier la détermination de leurs périodes, a été obtenue par Carl Friedrich Gauss en 1796. Ces fonctions ont un réseau de périodes carré, et sont étroitement reliées à la fonction elliptique de Weierstrass dont les invariants sont g2 = 1 et g3 = 0.
Constante de GaussEn mathématiques, la constante de Gauss, notée G, est l'inverse de la moyenne arithmético-géométrique de 1 et de la racine carrée de 2 : L'éponyme de cette constante est le mathématicien allemand Carl Friedrich Gauss (-) car il a découvert le à Brunswick que : La constante de Gauss peut être exprimée grâce à la valeur de la fonction bêta en (1/4, 1/2) : soit encore, grâce à la valeur de la fonction gamma en 1/4 : et puisque π et Γ(1/4) sont algébriquement indépendants, la constante de Gauss est transcendant
Intégrale elliptiqueLes intégrales elliptiques interviennent dans de nombreux problèmes de physique mathématique : comme par exemple, le calcul de la période d'un pendule aux grandes amplitudes et plus généralement les formes d'équilibre ellipsoïdales des corps en rotation autour d'un axe (planètes, étoiles, goutte d'eau, noyau atomique,...). Une intégrale elliptique est une intégrale de la forme où est une fonction rationnelle à deux variables, est une fonction polynomiale de degré 3 ou 4 avec des racines simples et est une constante.
Fonction elliptique de WeierstrassEn analyse complexe, les fonctions elliptiques de Weierstrass forment une classe importante de fonctions elliptiques c'est-à-dire de fonctions méromorphes doublement périodiques. Toute fonction elliptique peut être exprimée à l'aide de celles-ci. Supposons que l'on souhaite fabriquer une telle fonction de période 1. On peut prendre une fonction quelconque, définie sur [0, 1] et telle que f(0) = f(1) et la prolonger convenablement. Un tel procédé a des limites. Par exemple, on obtiendra rarement des fonctions analytiques de cette façon.
Fonction thêtaEn mathématiques, on appelle fonctions thêta certaines fonctions spéciales d'une ou de plusieurs variables complexes. Elles apparaissent dans plusieurs domaines, comme l'étude des variétés abéliennes, des espaces de modules, et les formes quadratiques. Elles ont aussi des applications à la théorie des solitons. Leurs généralisations en algèbre extérieure apparaissent dans la théorie quantique des champs, plus précisément dans la théorie des cordes et des D-branes.
Fonction elliptique de JacobiEn mathématiques, les fonctions elliptiques de Jacobi sont des fonctions elliptiques d'une grande importance historique. Introduites par Carl Gustav Jakob Jacobi vers 1830, elles ont des applications directes, par exemple dans l'équation du pendule. Elles présentent aussi des analogies avec les fonctions trigonométriques, qui sont mises en valeur par le choix des notations sn et cn, qui rappellent sin et cos. Si les fonctions elliptiques thêta de Weierstrass semblent mieux adaptées aux considérations théoriques, les problèmes physiques pratiques font plus appel aux fonctions de Jacobi.