PolyèdreUn polyèdre est une forme géométrique à trois dimensions (un solide géométrique) ayant des faces planes polygonales qui se rencontrent selon des segments de droite qu'on appelle arêtes. Le mot polyèdre, signifiant à plusieurs faces, provient des racines grecques πολύς (polys), « beaucoup » et ἕδρα (hedra), « base », « siège » ou « face ». Un polyèdre est un solide dont toutes les faces sont des polygones. Les côtés de ces polygones sont appelés arêtes. Les extrémités des arêtes sont des points appelés sommets.
AntiprismeUn antiprisme à n faces est un polyèdre composé de deux copies d'un certain polygone particulier à n côtés, connecté par une bande de triangles alternés. Les antiprismes sont une sous-classe des prismatoïdes. Les antiprismes sont similaires aux prismes excepté le fait que les bases sont tournées relativement l'une à l'autre, et que les faces des côtés sont des triangles, plutôt que des quadrilatères : les sommets sont symétriquement alternés. Dans le cas d'une base régulière à n côtés, on considère généralement le cas où sa copie est tournée d'un angle de 180°/n.
BipyramideEn géométrie, un diamant ou bipyramide, ou encore dipyramide, est un polyèdre constitué de deux pyramides symétriques dont la même base forme un polygone régulier. L'ordre du diamant est l'ordre du polygone de la base. C'est aussi l'ordre du sommet de chaque pyramide. Il existe un unique diamant dans les polyèdres réguliers: l'octaèdre. Cependant, pour chaque ordre d'un diamant, il existe un diamant dont toutes les faces sont des triangles isocèles isométriques.
DodécaèdreEn géométrie, un dodécaèdre est un polyèdre à douze faces. Puisque chaque face a au moins trois côtés et que chaque arête borde deux faces, un dodécaèdre a au moins 18 arêtes. Certains ont des propriétés particulières comme des faces régulières ou des symétries : le dodécaèdre régulier, seul solide de Platon à faces pentagonales régulières ; le grand dodécaèdre, le petit dodécaèdre étoilé et le grand dodécaèdre étoilé, trois solides de Kepler-Poinsot ; le dodécaèdre rhombique (de première espèce) et le dodécaèdre rhombique de seconde espèce (ou dodécaèdre de Bilinski) dont les faces, toutes identiques, sont des losanges (rhombes).
4-polytopeEn géométrie, un 4-polytope (fréquemment appelé également un polychore) est un polytope de l'espace à quatre dimensions. C'est une figure connexe, composée d'un nombre fini de polytopes de dimension inférieure : des sommets, des arêtes, des faces (qui sont des polygones), et des cellules (qui sont des polyèdres), chaque face appartenant à exactement deux cellules. Le 4-polytope le plus connu est le tesseract (ou hypercube), analogue en 4D du cube. La définition des 4-polytopes varie beaucoup selon les auteurs.
Polyèdre semi-réguliervignette|Le cuboctaèdre, un des 13 solides d'Archimède. Un polyèdre est dit semi-régulier si ses faces sont des polygones réguliers, et si son groupe de symétrie est transitif sur ses sommets. Ou au moins, c'est ce qui découle de la définition de 1900 de Gosset sur le polytope semi-régulier le plus général. Ces polyèdres incluent : Les treize solides d'Archimède. La série infinie des prismes convexes. La série infinie des antiprismes convexes (leur nature semi-régulière fut observée en premier par Kepler).
Point groups in three dimensionsIn geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices. O(3) itself is a subgroup of the Euclidean group E(3) of all isometries. Symmetry groups of geometric objects are isometry groups. Accordingly, analysis of isometry groups is analysis of possible symmetries.
CubeEn géométrie euclidienne, un cube est un prisme droit dont toutes les faces sont carrées donc égales et superposables. Le cube figure parmi les solides les plus remarquables de l'espace. C'est le seul des cinq solides de Platon ayant exactement 6 faces, 12 arêtes et 8 sommets. Son autre nom est « hexaèdre régulier ». Le cube est un zonoèdre à trois générateurs. Comme il a quatre sommets par face et trois faces par sommet, son symbole de Schläfli est {4,3}. L'étymologie du mot cube est grecque ; cube provient de kubos, le dé.
Symétrie de rotationEn physique, la symétrie de rotation, ou invariance par rotation, est la propriété d'une théorie, ou d'un système physique de ne pas être modifié soit par une rotation spatiale quelconque, ou alors par seulement certaines d'entre elles. Lorsque le système est invariant par n'importe quelle rotation d'espace, on parle d'isotropie (du Grec isos (ἴσος, "égal, identique") et tropos (τρόπος, "tour, direction"). Dans ce cas toutes les directions de l'espace sont équivalentes.
Tronc (géométrie)Un tronc est la partie d'un solide située entre deux plans parallèles. Le solide est généralement un cône ou une pyramide. Les faces du solide obtenues dans les plans de coupe sont appelées bases du tronc, et la distance entre les deux plans de coupe est la hauteur du tronc. Le volume d'un tronc de pyramide ou de cône est le produit de sa hauteur par la moyenne arithmétique des aires de ses bases et de leur moyenne géométrique.