Géométrie différentielle des surfacesEn mathématiques, la géométrie différentielle des surfaces est la branche de la géométrie différentielle qui traite des surfaces (les objets géométriques de l'espace usuel E3, ou leur généralisation que sont les variétés de dimension 2), munies éventuellement de structures supplémentaires, le plus souvent une métrique riemannienne. Outre les surfaces classiques de la géométrie euclidienne (sphères, cônes, cylindres, etc.
Theorema egregiumEn mathématiques, et plus précisément en géométrie, le theorema egregium (« théorème remarquable » en latin) est un important théorème énoncé par Carl Friedrich Gauss et portant sur la courbure des surfaces. Il énonce que celle-ci peut être entièrement déterminée à partir de la métrique locale de la surface, c'est-à-dire qu'elle ne dépend pas de la manière dont la surface peut être plongée dans l'espace tridimensionnel. Considérons une surface de l'espace euclidien R.
Formule de Gauss-Bonnetvignette|Exemple d'une surface à laquelle le théorème de Gauss-Bonnet peut être appliqué En géométrie différentielle, la formule de Gauss-Bonnet est une propriété reliant la géométrie (au sens de la courbure de Gauss) et la topologie (au sens de la caractéristique d'Euler) des surfaces. Elle porte le nom des mathématiciens Carl Friedrich Gauss, qui avait conscience d'une version du théorème, mais ne la publia jamais, et Pierre Ossian Bonnet, qui en publia un cas particulier en 1848.
GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Courburevignette|Le déplacement d'une Dictyostelium discoideum dont la couleur du contour est fonction de la courbure. Échelle : 5 μm ; durée : 22 secondes. Intuitivement, courbe s'oppose à droit : la courbure d'un objet géométrique est une mesure quantitative du caractère « plus ou moins courbé » de cet objet. Par exemple : dans le plan euclidien, une ligne droite est un objet à une dimension de courbure nulle et un cercle un objet de courbure constante positive, valant 1/R (inverse du rayon) ; dans l'espace euclidien usuel à trois dimensions, un plan est un objet à deux dimensions de courbure nulle, et une sphère est un objet à deux dimensions de courbure constante positive.
Seconde forme fondamentaleLa seconde forme fondamentale est une forme quadratique caractérisant certains aspects de la géométrie différentielle des surfaces. Ce concept est d'abord apparu dans l'étude des surfaces réglées avant de prendre toute sa généralité dans le cadre de la géométrie riemannienne. Alors que la première forme fondamentale décrit la « géométrie interne » d'une surface (c'est-à-dire les propriétés qui peuvent être déterminées depuis la surface elle-même), la seconde forme fondamentale dépend de la situation de la surface dans l'espace.
Projection stéréographiqueEn géométrie et en cartographie, la projection stéréographique est une projection cartographique azimutale permettant de représenter une sphère privée d'un point sur un plan. On convient souvent que le point dont on prive la sphère sera un des pôles de celle-ci ; le plan de projection peut être celui qui sépare les deux hémisphères, nord et sud, de la sphère, qu'on appelle plan équatorial. On peut également faire une projection stéréographique sur n'importe quel plan parallèle au plan équatorial pourvu qu'il ne contienne pas le point dont on a privé la sphère.
Courbure principaleEn géométrie différentielle des surfaces, les deux courbures principales d'une surface sont les courbures de cette surface selon deux directions perpendiculaires appelées directions principales. On montre que ce sont les courbures minimale et maximale rencontrées en faisant tourner le plan de coupe. Les courbures principales sont les valeurs propres de l'endomorphisme de Weingarten. Elles caractérisent la géométrie locale des surfaces à l'ordre 2.
Projection cartographiqueLa projection cartographique est un ensemble de techniques géodésiques permettant de représenter une surface non plane (surface de la Terre, d'un autre corps céleste, du ciel, ...) dans son ensemble ou en partie sur la surface plane d'une carte. L'impossibilité de projeter le globe terrestre sur une surface plane sans distorsion (Theorema egregium) explique que diverses projections aient été inventées, chacune ayant ses avantages. Le choix d'une projection et le passage d'une projection à une autre comptent parmi les difficultés mathématiques que les cartographes ont dû affronter.
HyperboloïdeUn hyperboloïde est en géométrie une surface du second degré de l'espace euclidien. Il fait donc partie des quadriques, avec pour caractéristique principale de posséder un centre de symétrie et de s'étendre à l'infini. Les sections non triviales d'un hyperboloïde avec un plan sont des paraboles, des ellipses ou des hyperboles. On distingue deux types d'hyperboloïdes, connexes ou non, chaque partie connexe s'appelant une nappe. Le cône peut être vu comme une forme dégénérée d'hyperboloïde.