Logical biconditionalIn logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientaiment, is the logical connective used to conjoin two statements and to form the statement " if and only if " (often abbreviated as " iff "), where is known as the antecedent, and the consequent. Nowadays, notations to represent equivalence include . is logically equivalent to both and , and the XNOR (exclusive nor) boolean operator, which means "both or neither".
Produit (mathématiques)On nomme produit de nombres entiers, réels, complexes ou autres le résultat de leur multiplication. Les éléments multipliés s’appellent les facteurs du produit. L’expression d’un produit est aussi appelée « produit », par exemple l’écriture 3a du triple du nombre a est un produit de deux facteurs, où le symbole de la multiplication est sous-entendu. L'ordre dans lequel les nombres réels ou les nombres complexes sont multipliés, de même que la façon de regrouper ces termes, n'ont pas d'importance ; ainsi, nulle permutation de termes ne modifie le résultat du produit.
Table de multiplicationUne table de multiplication affiche dans les lignes et colonnes le résultat de la multiplication des petits nombres entiers naturels. Le terme usité du Moyen Âge au était « livret » (ce terme est encore courant en Suisse). Le système de numération décimale de position permet d'effectuer la multiplication de deux nombres quelconques à l'aide de la seule connaissance des produits des nombres de 0 à 9 entre eux. C'est à l'école primaire que s'effectue l'apprentissage des tables qui récapitulent tous ces produits.
Conjonction logiqueEn logique, la conjonction est une opération mise en œuvre par le connecteur binaire et. Le connecteur et est donc un opérateur binaire qui lie deux propositions pour en faire une autre. Si on admet chacune des deux propositions, alors on admettra la proposition qui en est la conjonction. En logique mathématique, le connecteur de conjonction est noté soit &, soit ∧. En théorie de la démonstration, plus particulièrement en calcul des séquents, la conjonction est régie par des règles d'introduction et des règles d'élimination.
OpérandeEn mathématiques, dans une expression décrivant une opération, chacun des éléments sur lesquels s'applique l’opération est appelé un opérande. Selon l'arité de l'opérateur utilisé, il peut y avoir ainsi zéro, un ou plusieurs opérandes. En langage de programmation, l'arité de l'opérateur peut dépendre du jeu d'instructions. Un opérande peut être une constante, une simple variable ou une expression faisant intervenir d'autres opérations. Deux opérandes distincts peuvent avoir la même expression et a fortiori la même valeur.
Somme (arithmétique)En mathématiques, la somme de deux nombres est le résultat de leur addition. Les éléments additionnés s’appellent les termes de la somme. Elle se calcule de différentes manières selon le système de numération employé. Du fait de la commutativité et de l'associativité de l'addition, la somme d'un ensemble fini de nombres est bien définie indépendamment de l'ordre dans lequel est faite l'addition, mais il n'existe pas toujours de formule réduite pour l'exprimer.
Multiplication par un scalairevignette|320x320px|Exemple de multiplication d'un vecteur par un scalaire En mathématiques, la multiplication par un scalaire est l'une des lois externes de base définissant un espace vectoriel en algèbre linéaire (ou plus généralement, un module en algèbre générale). Si K est un corps commutatif, la définition d'un espace vectoriel E sur K prescrit l'existence d'une loi de composition externe, une application de K × E dans E. L'image d'un couple (λ, v), pouvant être notée λv ou λ∙v, est la multiplication du vecteur v par le scalaire λ.
Conjuguévignette|Représentation géométrique (diagramme d'Argand) de z et de son conjugué z̅ dans le plan complexe. Le conjugué est obtenu par symétrie par l'axe des réels. En mathématiques, le conjugué d'un nombre complexe z est le nombre complexe formé de la même partie réelle que z mais de partie imaginaire opposée. Le conjugué d'un nombre complexe , où a et b sont nombres réels, est noté ou . Dans le plan, le point d'affixe est le symétrique du point d'affixe par rapport à l'axe des abscisses. Le module du conjugué reste inchangé.
Groupe abélienEn mathématiques, plus précisément en algèbre, un groupe abélien (du nom de Niels Abel), ou groupe commutatif, est un groupe dont la loi de composition interne est commutative. Vu autrement, un groupe commutatif peut aussi être défini comme un module sur l'anneau commutatif des entiers relatifs ; l'étude des groupes abéliens apparaît alors comme un cas particulier de la théorie des modules. On sait classifier de façon simple et explicite les groupes abéliens de type fini à isomorphisme près, et en particulier décrire les groupes abéliens finis.
Loi d'absorptionEn algèbre, la loi d'absorption est une identité reliant deux lois de composition interne. Deux lois de composition interne et vérifient la loi d'absorption si : Soit un ensemble muni de deux lois de composition interne et . Si ces lois sont commutatives, associatives et vérifient la loi d'absorption, la structure algébrique résultante est un treillis.