Équivalence logiqueEn logique classique, deux propositions P et Q sont dites logiquement équivalentes ou simplement équivalentes quand il est possible de déduire Q à partir de P et de déduire P à partir de Q. En calcul des propositions, cela revient à dire que P et Q ont même valeur de vérité : P et Q sont soit toutes les deux vraies, soit toutes les deux fausses. L'équivalence logique s'exprime souvent sous la forme si et seulement si, dans des cadres comme l'enseignement ou la métamathématique pour parler des propriétés de la logique elle-même, et non du connecteur logique qui lie deux propositions.
Union (mathématiques)Dans la théorie des ensembles, l'union ou réunion est une opération ensembliste de base. En algèbre booléenne, l'union est associée à l'opérateur logique ou inclusif et est notée ∪. L'union de deux ensembles A et B est l'ensemble qui contient tous les éléments qui appartiennent à A ou appartiennent à B. On la note A ∪ B et on la dit « A union B » Formellement : Par exemple l'union des ensembles A = {1, 2, 3} et B = {2, 3, 4} est l'ensemble {1, 2, 3, 4}.
Égalité (mathématiques)vignette|"Signe égal" exprimant l'égalité entre deux expressions. En mathématiques, l’égalité est une relation binaire entre deux objets signifiant que ces objets sont identiques, c’est-à-dire que le remplacement de l’un par l’autre dans une expression ne change jamais la valeur de cette dernière. Une égalité est une proposition pouvant s’écrire à l’aide du signe égal « = », séparant deux expressions mathématiques de même nature (nombres, vecteurs, fonctions, ensembles...) ; la négation de cette proposition s’écrit à l’aide du symbole « ≠ ».
Élément neutreEn mathématiques, plus précisément en algèbre, un élément neutre (ou élément identité) d'un ensemble pour une loi de composition interne est un élément de cet ensemble qui laisse tous les autres éléments inchangés lorsqu'il est composé avec eux par cette loi. Un magma possédant un élément neutre est dit unifère. Soit un magma. Un élément de est dit : neutre à gauche si ; neutre à droite si ; neutre s'il est neutre à droite et à gauche.
Opération (mathématiques)En mathématiques, une opération est un processus visant à obtenir un résultat à partir d'un ou plusieurs objets appelés opérandes. L'écriture d'une opération implique en général l'utilisation d'un symbole spécifique appelé opérateur. En arithmétique, les quatre opérations élémentaires (addition, soustraction, multiplication et division) sont suivies par le carré, le cube et plus généralement les opérations puissance, la racine carrée, l'exponentiation, la factorielle...
Structure algébriqueEn mathématiques, une structure algébrique est définie axiomatiquement par une ou plusieurs opérations sur un ensemble (dites internes), éventuellement muni d’autres opérations (externes) dépendant d’autres ensembles, toutes ces opérations satisfaisant certaines relations telles que l’associativité, la commutativité ou la distributivité. La structure de groupe qui émerge progressivement au , avec une seule opération interne et quelques propriétés se formalise au début du avec une kyrielle de structures d’algèbre générale moins restrictives (monoïde) ou au contraire enrichies par une seconde opération (anneau, corps, algèbre de Boole.
SoustractionLa soustraction est l'une des opérations basiques de l'arithmétique. La soustraction combine deux ou plusieurs grandeurs du même type, appelées opérandes, pour donner un seul nombre, appelé la différence. Soustraire signifie diminuer en comptant. Soustraire b de a (calculer a − b) c'est trouver le nombre qui complèterait b pour donner a, c'est-à-dire le nombre d tel que b + d = a Le signe de soustraction est le symbole « − ». Par exemple : on lit 3 − 2 = 1 comme « trois moins deux font un ».
Racine d'un nombreEn mathématiques, une racine n-ième d'un nombre a est un nombre b tel que b = a, où n est un entier naturel non nul. Selon que l'on travaille dans l'ensemble des réels positifs, l'ensemble des réels ou l'ensemble des complexes, le nombre de racines n-ièmes d'un nombre peut être 0, 1, 2 ou n. Pour un nombre réel a positif, il existe un unique réel b positif tel que b = a. Ce réel est appelé la racine n-ième de a (ou racine n-ième principale de a) et se note avec le symbole radical () ou a.
Commutateur (opérateur)Un commutateur est un opérateur introduit en mathématiques et étendu à la mécanique quantique. En mathématiques, le commutateur donne une idée de la façon dont une loi n'est pas commutative. Il existe plusieurs définitions utilisées en théorie des groupes et en théorie des anneaux. Soit un groupe et soient et deux éléments du groupe. On appelle commutateur de et l'élément du groupe défini par : Remarque : Un commutateur représente en fait le défaut de « permutabilité » de deux éléments du groupe : .
Divisionvignette|Division en tant que partage. Illustration de 20÷4 : partage d'un ensemble de 20 pommes en 4 parts égales. La division est une opération mathématique qui, à deux nombres a et b, associe un troisième nombre (loi de composition interne), appelé quotient ou rapport, et qui peut être notée : a : b ; a ÷ b (obélus) ; a / b (barre oblique, fraction en ligne) ; (fraction). Dans une première approche, on peut voir la quantité a÷b comme une séparation de la quantité a en b parts égales.