Groupe cycliqueEn mathématiques et plus précisément en théorie des groupes, un groupe cyclique est un groupe qui est à la fois fini et monogène, c'est-à-dire qu'il existe un élément a du groupe tel que tout élément du groupe puisse s'exprimer sous forme d'un multiple de a (en notation additive, ou comme puissance en notation multiplicative) ; cet élément a est appelé générateur du groupe. Il n'existe, à isomorphisme près, pour tout entier n > 0, qu'un seul groupe cyclique d'ordre n : le groupe quotient Z/nZ — également noté Z ou C — de Z par le sous-groupe des multiples de n.
DiviseurLe mot “diviseur” a deux significations en mathématiques. Une division est effectuée à partir d’un “dividende” et d’un “diviseur”, et une fois l’opération terminée, le produit du “quotient” par le diviseur augmenté du “reste” est égal au dividende. En arithmétique, un “diviseur” d'un entier n est un entier dont n est un multiple. Plus formellement, si d et n sont deux entiers, d est un diviseur de n seulement s'il existe un entier k tel que . Ainsi est un diviseur de car .
Plus petit commun multipleEn mathématiques, et plus précisément en arithmétique, le plus petit commun multiple – en abrégé PPCM – (peut s'appeler aussi PPMC, soit « plus petit multiple commun ») de deux entiers non nuls a et b est le plus petit entier strictement positif qui soit multiple de ces deux nombres. On le note a ∨ b ou PPCM(a, b), ou parfois simplement [a, b]. On peut également définir le PPCM de a et b comme un multiple commun de a et de b qui divise tous les autres.
Comparaison asymptotiqueEn mathématiques, plus précisément en analyse, la comparaison asymptotique est une méthode consistant à étudier la vitesse de croissance d'une fonction au voisinage d'un point ou à l'infini, en la comparant à celle d'une autre fonction considérée comme plus « simple ». Celle-ci est souvent choisie sur une échelle de référence, contenant en général au moins certaines fonctions dites élémentaires, en particulier les sommes et produits de polynômes, d'exponentielles et de logarithmes.
Ordre (théorie des groupes)En théorie des groupes, une branche des mathématiques, le terme ordre est utilisé dans deux sens intimement liés : L'ordre d'un groupe est le cardinal de son ensemble sous-jacent. Le groupe est dit fini ou infini suivant que son ordre est fini ou infini. Si un élément a d'un groupe G engendre dans G un sous-groupe (monogène) fini d'ordre d, on dit que a est d'ordre fini et, plus précisément, d'ordre d. Si le sous-groupe engendré par a est infini, on dit que a est d'ordre infini.
Fonction arithmétiqueEn théorie des nombres, une fonction arithmétique f est une application définie sur l'ensemble des entiers strictement positifs et à valeurs dans l'ensemble des nombres complexes. En d'autres termes, une fonction arithmétique n'est rien d'autre qu'une suite de nombres complexes, indexée par N*. Les fonctions arithmétiques les plus étudiées sont les fonctions additives et les fonctions multiplicatives. Une opération importante sur les fonctions arithmétiques est le produit de convolution de Dirichlet.