Réflexion (mathématiques)En mathématiques, une réflexion ou symétrie axiale du plan euclidien est une symétrie orthogonale par rapport à une droite (droite vectorielle s'il s'agit d'un plan vectoriel euclidien). Elle constitue alors une symétrie axiale orthogonale. Plus généralement, dans un espace euclidien quelconque, une réflexion est une symétrie orthogonale par rapport à un hyperplan, c'est-à-dire à un sous-espace de codimension 1. En dimension 3, il s'agit donc d'une symétrie orthogonale par rapport à un plan.
Théorème de VarignonIl existe deux théorèmes démontrés par Pierre Varignon. D'autre part, si ABCD est plan et convexe, son aire est le double de celle de IJKL. En corollaire, les médianes d'un quadrilatère ont même milieu (étant les diagonales du parallélogramme). Le périmètre du parallélogramme de Varignon est égal à la somme des longueurs des diagonales du quadrilatère. vignette|upright=1.5|Cas d'un quadrilatère croisé. En reprenant les notations du dessin ci-dessus, et en adoptant les notations barycentriques, on a : donc (par associativité du barycentre) ce qui exprime que IJKL est un parallélogramme.
Cerf-volant droitdroite|vignette| Cerf-volant droit avec ses cercles circonscrit inscrit. vignette|Quadrilatère circonscriptible divisé en quatre cerfs-volants droits. En géométrie euclidienne, un cerf-volant droit est un cerf-volant (quadrilatère dont les quatre côtés peuvent être regroupés en deux paires de côtés adjacents de même longueur) ayant deux angles droits opposés. Une condition équivalent est qu'il soit inscrit dans un cercle.
Quadrilatère inscriptibleEn géométrie, un quadrilatère inscriptible (ou cyclique ) est un quadrilatère dont les sommets se trouvent tous sur un seul et même cercle. Les sommets sont dits cocycliques. Le quadrilatère est dit inscrit dans le cercle, et le cercle, circonscrit au quadrilatère. Un quadrilatère convexe est inscriptible si et seulement si les quatre médiatrices des côtés sont concourantes. Le point de concours est alors le centre du cercle circonscrit et les médiatrices des diagonales passent par ce point.
Quadrilatère équidiagonalvignette|300x300px| Un quadrilatère équidiagonal : en rouge ses diagonales (de longueur égales), en vert le losange de Varignon et en bleu, les bimédianes perpendiculaires. Un quadrilatère équidiagonal est un quadrilatère convexe dont les diagonales ont la même longueur. Les quadrilatères équidiagonaux étaient importants dans les mathématiques indiennes antiques, où les quadrilatères étaient classés en premier lieu selon qu'ils étaient équidiagonaux ou non.
Points cocycliquesEn géométrie, des points du plan sont dits cocycliques s'ils appartiennent à un même cercle. Trois points non alignés du plan sont cocycliques. En effet, tout triangle possède un cercle circonscrit. vignette La propriété précédente est un corollaire du théorème de l'angle inscrit. Si sont les affixes respectives de , la condition précédente s'écrit aussi D'où en utilisant le birapport, la condition équivalente : Le théorème de Ptolémée donne une condition nécessaire et suffisante de cocyclicité de quatre points par leurs distances.
Quadrilatère circonscriptiblevignette|300x300px| Un quadrilatère circonscriptible avec son cercle inscrit En géométrie euclidienne, un quadrilatère circonscriptible (ou quadrilatère tangentiel) est un quadrilatère convexe pour lequel il existe un cercle inscrit, c'est-à-dire un cercle situé à l'intérieur du quadrilatère et tangent à chacun de ses quatre côtés. On dit alors que le quadrilatère circonscrit son cercle inscrit. Un quadrilatère circonscriptible est un cas particulier de polygone circonscriptible.
Quadrilatère bicentriquevignette|Porisme de Poncelet pour les quadrilatères bicentriques ABCD et EFGH. En géométrie euclidienne, un quadrilatère bicentrique est un quadrilatère convexe possédant à la fois un cercle inscrit (tangent à ses quatre côtés) et un cercle circonscrit (passant par ses quatre sommets). Il découle de cette définition que les quadrilatères bicentriques ont les propriétés des quadrilatères circonscriptibles et celles des quadrilatères inscriptibles.
Cerf-volant (géométrie)En géométrie, un cerf-volant est un quadrilatère dont une des diagonales est un axe de symétrie (ou — ce qui est équivalent — un quadrilatère formé de deux paires de côtés adjacents égaux). Les diagonales peuvent se couper à l'intérieur (cerf-volant convexe) ou à l'extérieur (« pointe de flèche » ou cerf-volant non convexe). Ceci contraste avec un parallélogramme, où les côtés égaux sont opposés. L'objet géométrique est nommé en référence au cerf-volant que l'on fait voler, qui a, dans son aspect le plus simple, la forme d'un cerf-volant convexe.
Milieu d'un segmentEn géométrie affine, le milieu d'un segment est l'isobarycentre des deux extrémités du segment. Dans le cadre plus spécifique de la géométrie euclidienne, c'est aussi le point de ce segment situé à égale distance de ses extrémités. Symétrie centrale Deux points distincts A et A sont symétriques par rapport à un point O si et seulement si O est le milieu du segment [AA]. Dans la symétrie centrale de centre O, le symétrique de O est O lui-même. L'ensemble des points du plan équidistants de deux points A et B constitue la médiatrice du segment [AB].