Concepts associés (19)
Variété (géométrie)
En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
Espace vectoriel
vignette|Dans un espace vectoriel, on peut additionner deux vecteurs. Par exemple, la somme du vecteur v (en bleu) et w (en rouge) est v + w. On peut aussi multiplier un vecteur, comme le vecteur w que l'on peut multiplier par 2, on obtient alors 2w et la somme devient v + 2w. En mathématiques, plus précisément en algèbre linéaire, un espace vectoriel est un ensemble d'objets, appelés vecteurs, que l'on peut additionner entre eux, et que l'on peut multiplier par un scalaire (pour les étirer ou les rétrécir, les tourner, etc.
Variété différentielle
En mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
Cotangent space
In differential geometry, the cotangent space is a vector space associated with a point on a smooth (or differentiable) manifold ; one can define a cotangent space for every point on a smooth manifold. Typically, the cotangent space, is defined as the dual space of the tangent space at , , although there are more direct definitions (see below). The elements of the cotangent space are called cotangent vectors or tangent covectors. All cotangent spaces at points on a connected manifold have the same dimension, equal to the dimension of the manifold.
Courbe
En mathématiques, plus précisément en géométrie, une courbe, ou ligne courbe, est un objet du plan ou de l'espace usuel, similaire à une droite mais non nécessairement linéaire. Par exemple, les cercles, les droites, les segments et les lignes polygonales sont des courbes. La notion générale de courbe se décline en plusieurs objets mathématiques ayant des définitions assez proches : arcs paramétrés, lignes de niveau, sous-variétés de .
Smoothness
In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives it has over some domain, called differentiability class. At the very minimum, a function could be considered smooth if it is differentiable everywhere (hence continuous). At the other end, it might also possess derivatives of all orders in its domain, in which case it is said to be infinitely differentiable and referred to as a C-infinity function (or function).
Tangente (géométrie)
Tangente vient du latin tangere, toucher : en géométrie, la tangente à une courbe en un de ses points est une droite qui « touche » la courbe au plus près au voisinage de ce point. La courbe et sa tangente forment alors un angle nul en ce point. La notion de tangente permet d'effectuer des approximations : pour la résolution de certains problèmes qui demandent de connaître le comportement de la courbe au voisinage d'un point, on peut assimiler celle-ci à sa tangente. Ceci explique la parenté entre la notion de tangente et le calcul différentiel.
Champ de vecteurs
thumb|Un exemple de champ de vecteurs, de la forme (-y,x). thumb|Autre exemple. thumb|Le flux d'air autour d'un avion est un champ tridimensionnel (champ des vitesses des particules d'air), ici visualisé par les bulles qui matérialisent les lignes de courant. En mathématiques, un champ de vecteurs ou champ vectoriel est une fonction qui associe un vecteur à chaque point d'un espace euclidien ou plus généralement d'une variété différentielle.
Schéma (géométrie algébrique)
En mathématiques, les schémas sont les objets de base de la géométrie algébrique, généralisant la notion de variété algébrique de plusieurs façons, telles que la prise en compte des multiplicités, l'unicité des points génériques et le fait d'autoriser des équations à coefficients dans un anneau commutatif quelconque.
Vecteur euclidien
En mathématiques, et plus précisément en géométrie euclidienne, un vecteur euclidien est un objet géométrique possédant une direction, un sens et une norme. On l'utilise par exemple en physique et en ingénierie pour modéliser une force. On parle aussi parfois de vecteur géométrique dans le plan euclidien (deux dimensions) et de vecteur spatial dans l'espace à trois dimensions. Vecteur#HistoireVecteur En physique et en ingénierie, on travaille souvent dans l'espace euclidien.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.