Racine évidenteL'expression racine évidente . Elle désigne une racine d'une équation que l'on peut trouver sans faire appel à une méthode élaborée comme la méthode de Cardan pour les équations du troisième degré ou bien encore la méthode de Ferrari ou la méthode de Descartes pour les équations du quatrième degré. De nos jours, l'usage d'une calculatrice graphique donne la courbe de la fonction, et en montre ainsi les racines. Une vérification s'impose toutefois, car des approximations peuvent apparaitre.
Resolvent (Galois theory)In Galois theory, a discipline within the field of abstract algebra, a resolvent for a permutation group G is a polynomial whose coefficients depend polynomially on the coefficients of a given polynomial p and has, roughly speaking, a rational root if and only if the Galois group of p is included in G. More exactly, if the Galois group is included in G, then the resolvent has a rational root, and the converse is true if the rational root is a simple root. Resolvents were introduced by Joseph Louis Lagrange and systematically used by Évariste Galois.
Ludovico FerrariLodovico Ferrari ( 1522 - 1565) est un mathématicien italien du . Né à Bologne, Lodovico Ferrari est l'élève et le collaborateur de Jérôme Cardan. Il est extrêmement brillant et Cardan commence à lui enseigner les mathématiques. Il est célèbre pour avoir résolu l'équation du quatrième degré en la ramenant à une équation du troisième degré (voir « Méthode de Ferrari »). Ferrari prend sa retraite relativement jeune (43 ans) et assez riche. Il retourne dans sa ville natale pour tenir un poste de professeur de mathématiques en 1565.
Valeur propre, vecteur propre et espace propreEn mathématiques, et plus particulièrement en algèbre linéaire, le concept de vecteur propre est une notion algébrique s'appliquant à une application linéaire d'un espace dans lui-même. Il correspond à l'étude des axes privilégiés, selon lesquels l'application se comporte comme une dilatation, multipliant les vecteurs par une même constante. Ce rapport de dilatation est appelé valeur propre, les vecteurs auxquels il s'applique s'appellent vecteurs propres, réunis en un espace propre.
ConiqueEn géométrie euclidienne, une conique est une courbe plane algébrique, définie initialement comme l’intersection d'un cône de révolution (supposé prolongé à l’infini de part et d’autre du sommet) avec un plan. Lorsque le plan de coupe ne passe pas par le sommet du cône, la conique est dite non dégénérée et réalise l’une des trois formes de courbe suivantes : ellipse, parabole ou hyperbole (le cercle étant un cas particulier de l'ellipse, parfois appelé quatrième forme). Ces courbes sont caractérisées par un paramètre réel appelé excentricité.
Degré d'un polynômeEn algèbre commutative, le degré d'un polynôme (en une ou plusieurs indéterminées) est le degré le plus élevé de ses termes lorsque le polynôme est exprimé sous sa forme canonique constituée d'une somme de monômes. Le degré d'un terme est la somme des exposants des indéterminées qui y apparaissent. Le terme ordre a été utilisé comme synonyme de degré, mais de nos jours, il fait référence à des concepts différents, bien que connexes. Par exemple, le polynôme 7XY + 4X – 9 a trois monômes.
Casus irreducibilisEn algèbre, le casus irreducibilis (latin pour « cas irréductible ») désigne un cas apparaissant lors de la recherche des racines réelles d'un polynôme à coefficients entiers de degré 3 ou plus : c'est celui où les racines ne peuvent s'exprimer à l'aide de radicaux réels. Le casus irreducibilis le plus connu est celui des polynômes de degré 3 irréductibles dans les rationnels (impossibles à factoriser en polynômes de degré moindre) ayant trois racines réelles, cas qui a été prouvé par Pierre Wantzel en 1843.
Resolvent cubicIn algebra, a resolvent cubic is one of several distinct, although related, cubic polynomials defined from a monic polynomial of degree four: In each case: The coefficients of the resolvent cubic can be obtained from the coefficients of P(x) using only sums, subtractions and multiplications. Knowing the roots of the resolvent cubic of P(x) is useful for finding the roots of P(x) itself. Hence the name “resolvent cubic”. The polynomial P(x) has a multiple root if and only if its resolvent cubic has a multiple root.
Polynôme symétriqueEn mathématiques, un polynôme symétrique est un polynôme en plusieurs indéterminées, invariant par permutation de ses indéterminées. Ils jouent notamment un rôle dans les relations entre coefficients et racines. Soit A un anneau commutatif unitaire. Un polynôme Q(T, ..., T) en n indéterminées à coefficients dans A est dit symétrique si pour toute permutation s de l'ensemble d'indices {1, ..., n}, l'égalité suivante est vérifiée : Exemples Pour n = 1, tout polynôme est symétrique.
Équation sextiquevignette|Fonction sextique possédant 6 zéros. Une fonction sextique possède toujours 6 zéros complexes ou réels. Le nombre de zéros complexes est égal à 6-n, où n est le nombre de zéros réels, compris entre 0 et 6. Une équation sextique est une équation polynomiale de degré 6 de la forme , où sont des coefficients réels ou complexes (ou appartenant à n'importe quel corps). On a spécifiquement . Une telle équation est obtenu à partir d'un polynôme , où est une fonction sextique de la forme , .