Matrice par blocsvignette|Un matrice présente une structure par blocs si l'on peut isoler les termes non nuls dans des sous-matrices (ici la structure « diagonale par blocs » d'une réduite de Jordan). On appelle matrice par blocs une matrice divisée en blocs à partir d'un groupement quelconque de termes contigus de sa diagonale. Chaque bloc étant indexé comme on indicerait les éléments d'une matrice, la somme et le produit de deux matrices partitionnées suivant les mêmes tailles de bloc, s'obtiennent avec les mêmes règles formelles que celles des composantes (mais en veillant à l'ordre des facteurs dans les produits matriciels!).
Canonical formIn mathematics and computer science, a canonical, normal, or standard form of a mathematical object is a standard way of presenting that object as a mathematical expression. Often, it is one which provides the simplest representation of an object and allows it to be identified in a unique way. The distinction between "canonical" and "normal" forms varies from subfield to subfield. In most fields, a canonical form specifies a unique representation for every object, while a normal form simply specifies its form, without the requirement of uniqueness.
Spectre d'un opérateur linéaireEn mathématiques, plus précisément en analyse fonctionnelle, le spectre d'un opérateur linéaire sur un espace vectoriel topologique est l'ensemble de ses valeurs spectrales. En dimension finie, cet ensemble se réduit à l'ensemble des valeurs propres de cet endomorphisme, ou de sa matrice dans une base. En et en mécanique quantique, la notion de spectre s'étend aux opérateurs non bornés fermés. Soit une algèbre de Banach unifère sur le corps des nombres complexes.
Jordan matrixIn the mathematical discipline of matrix theory, a Jordan matrix, named after Camille Jordan, is a block diagonal matrix over a ring R (whose identities are the zero 0 and one 1), where each block along the diagonal, called a Jordan block, has the following form: Every Jordan block is specified by its dimension n and its eigenvalue , and is denoted as Jλ,n. It is an matrix of zeroes everywhere except for the diagonal, which is filled with and for the superdiagonal, which is composed of ones.
HermitienPlusieurs entités mathématiques sont qualifiées d'hermitiennes en référence au mathématicien Charles Hermite. Produit scalaire#Généralisation aux espaces vectoriels complexesProduit scalaire hermitien Soit E un espace vectoriel complexe. On dit qu'une application f définie sur E x E dans C est une forme sesquilinéaire à gauche si quels que soient les vecteurs X, Y, Z appartenant à E, et a, b des scalaires : f est semi-linéaire par rapport à la première variable et f est linéaire par rapport à la deuxième variable Une telle forme est dite hermitienne (ou à symétrie hermitienne) si de plus : ou, ce qui est équivalent : Elle est dite hermitienne définie positive si pour tout vecteur .
Generalized eigenvectorIn linear algebra, a generalized eigenvector of an matrix is a vector which satisfies certain criteria which are more relaxed than those for an (ordinary) eigenvector. Let be an -dimensional vector space and let be the matrix representation of a linear map from to with respect to some ordered basis. There may not always exist a full set of linearly independent eigenvectors of that form a complete basis for . That is, the matrix may not be diagonalizable.
Matrice compagnonEn algèbre linéaire, la matrice compagnon du polynôme unitaire est la matrice carrée suivante : mais il existe d'autres conventions : la matrice transposée de celle ci-dessus ; une variante de cette transposée : la matrice Le polynôme caractéristique de C(p) est égal à p (ou (–1)p selon la convention choisie pour le polynôme caractéristique) ; en ce sens, la matrice C(p) est la « compagne » du polynôme p. Si le polynôme p possède n racines distinctes λ1, ...
Polynôme minimal d'un endomorphismeLe polynôme minimal est un outil qui permet d'utiliser en algèbre linéaire des résultats de la théorie des polynômes. Il est en effet possible d'appliquer un polynôme à un endomorphisme, comme expliqué dans l'article intérêt du concept de polynôme d'endomorphisme. Il est défini comme le polynôme unitaire (son coefficient de plus haut degré est égal à 1) de plus petit degré qui annule un endomorphisme, c'est-à-dire une application linéaire d'un espace vectoriel dans lui-même.
Base canoniqueEn mathématiques, plus précisément en algèbre linéaire, certains espaces vectoriels possèdent une base qualifiée de canonique ; il s'agit d'une base qui se présente de manière naturelle d'après la manière dont l'espace vectoriel est présenté. C'est ainsi que l'on parle de la base canonique de R, de la base canonique de l'espace vectoriel des matrices ou de celui des polynômes. En revanche sur un espace vectoriel quelconque, la notion n'a pas de sens : il n'y a pas de choix de base privilégiée.
Décomposition de FrobeniusOn considère un K-espace vectoriel E de dimension finie et un endomorphisme u de cet espace. Une décomposition de Frobenius est une décomposition de E en somme directe de sous-espaces dits cycliques, telle que les polynômes minimaux (ou caractéristiques) respectifs des restrictions de u aux facteurs sont les facteurs invariants de u. La décomposition de Frobenius peut s'effectuer sur un corps quelconque : on ne suppose pas ici que K est algébriquement clos.