Identités de NewtonEn mathématiques, et plus particulièrement en algèbre, les identités de Newton (connues également sous le nom de formules de Newton-Girard) sont des relations entre deux types de polynômes symétriques, les polynômes symétriques élémentaires, et les sommes de Newton, c'est-à-dire les sommes de puissances des indéterminées. Évaluées aux racines d'un polynôme P à une variable, ces identités permettent d'exprimer les sommes des k-ièmes puissances de toutes les racines de P (comptées avec leur multiplicité) en fonction des coefficients de P, sans qu'il soit nécessaire de déterminer ces racines.
Représentations du groupe symétriqueEn mathématiques les représentations du groupe symétrique sont un exemple d'application de la théorie des représentations d'un groupe fini. L'analyse de ces représentations est une illustration des concepts comme le théorème de Maschke, les caractères, la représentation régulière, les représentations induites et la réciprocité de Frobenius. L'histoire des représentations du groupe symétrique et du groupe alterné associés, joue un rôle particulier pour la théorie des caractères.
Polynôme symétriqueEn mathématiques, un polynôme symétrique est un polynôme en plusieurs indéterminées, invariant par permutation de ses indéterminées. Ils jouent notamment un rôle dans les relations entre coefficients et racines. Soit A un anneau commutatif unitaire. Un polynôme Q(T, ..., T) en n indéterminées à coefficients dans A est dit symétrique si pour toute permutation s de l'ensemble d'indices {1, ..., n}, l'égalité suivante est vérifiée : Exemples Pour n = 1, tout polynôme est symétrique.
Tableau de YoungLes tableaux de Young sont des objets combinatoires qui jouent un rôle important en théorie des représentations des groupes et dans la théorie des fonctions symétriques. Ils permettent en particulier de construire les représentations irréductibles du groupe symétrique, ainsi que celles du groupe général linéaire sur le corps des complexes. Les tableaux de Young ont été introduits par Alfred Young, un mathématicien de l'université de Cambridge, en 1900. Ils ont été appliqués à l'étude du groupe symétrique par Georg Frobenius en 1903.
Vandermonde polynomialIn algebra, the Vandermonde polynomial of an ordered set of n variables , named after Alexandre-Théophile Vandermonde, is the polynomial: (Some sources use the opposite order , which changes the sign times: thus in some dimensions the two formulas agree in sign, while in others they have opposite signs.) It is also called the Vandermonde determinant, as it is the determinant of the Vandermonde matrix. The value depends on the order of the terms: it is an alternating polynomial, not a symmetric polynomial.
Ring of symmetric functionsIn algebra and in particular in algebraic combinatorics, the ring of symmetric functions is a specific limit of the rings of symmetric polynomials in n indeterminates, as n goes to infinity. This ring serves as universal structure in which relations between symmetric polynomials can be expressed in a way independent of the number n of indeterminates (but its elements are neither polynomials nor functions). Among other things, this ring plays an important role in the representation theory of the symmetric group.