Racine évidenteL'expression racine évidente . Elle désigne une racine d'une équation que l'on peut trouver sans faire appel à une méthode élaborée comme la méthode de Cardan pour les équations du troisième degré ou bien encore la méthode de Ferrari ou la méthode de Descartes pour les équations du quatrième degré. De nos jours, l'usage d'une calculatrice graphique donne la courbe de la fonction, et en montre ainsi les racines. Une vérification s'impose toutefois, car des approximations peuvent apparaitre.
Polynôme formelEn algèbre, le terme de polynôme formel, ou simplement polynôme, est le nom générique donné aux éléments d'une structure construite à partir d'un ensemble de nombres. On considère un ensemble A de nombres, qui peut être celui des entiers ou des réels, et on lui adjoint un élément X, appelé indéterminée. La structure est constituée par les nombres, le polynôme X, les puissances de X multipliées par un nombre, aussi appelés monômes (de la forme aX), ainsi que les sommes de monômes. La structure est généralement notée A[X].
Théorème fondamental de l'algèbreEn mathématiques, le théorème fondamental de l'algèbre, aussi appelé théorème de d'Alembert-Gauss et théorème de d'Alembert, indique que tout polynôme non constant, à coefficients complexes, admet au moins une racine. En conséquence, tout polynôme à coefficients entiers, rationnels ou encore réels admet au moins une racine complexe, car ces nombres sont aussi des complexes. Une fois ce résultat établi, il devient simple de montrer que sur C, le corps des nombres complexes, tout polynôme P est scindé, c'est-à-dire constant ou produit de polynômes de degré 1.
AlgèbreL'algèbre (de l’arabe الجبر, al-jabr) est une branche des mathématiques qui permet d'exprimer les propriétés des opérations et le traitement des équations et aboutit à l'étude des structures algébriques. Selon l’époque et le niveau d’études considérés, elle peut être décrite comme : une arithmétique généralisée, étendant à différents objets ou grandeurs les opérations usuelles sur les nombres ; la théorie des équations et des polynômes ; depuis le début du , l’étude des structures algébriques (on parle d'algèbre générale ou abstraite).
Polynôme irréductibleIn mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the field to which the coefficients of the polynomial and its possible factors are supposed to belong. For example, the polynomial x2 − 2 is a polynomial with integer coefficients, but, as every integer is also a real number, it is also a polynomial with real coefficients.
Polynôme minimal (théorie des corps)thumb|Carl Friedrich Gauss utilise des polynômes minimaux appelés cyclotomiques pour déterminer les polygones constructibles à la règle et au compas. En théorie des corps, le polynôme minimal sur un corps commutatif K d'un élément algébrique d'une extension de K, est le polynôme unitaire de degré minimal parmi les polynômes à coefficients dans le corps de base K qui annulent l'élément. Il divise tous ces polynômes. C'est toujours un polynôme irréductible.
Corps de nombresEn mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
Polynomial greatest common divisorIn algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers. In the important case of univariate polynomials over a field the polynomial GCD may be computed, like for the integer GCD, by the Euclidean algorithm using long division. The polynomial GCD is defined only up to the multiplication by an invertible constant.
CoefficientUn coefficient est un facteur constant, exprimé par un nombre ou par un symbole qui le représente, qui s’applique à une grandeur variable (grandeur physique ou variable mathématique). En physique par exemple, quand la vitesse d’un solide mobile est constante, la distance parcourue est proportionnelle à la durée du parcours, la vitesse étant le coefficient de proportionnalité à appliquer à une durée donnée pour obtenir la distance parcourue pendant ce temps.
Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.