Théorème de MénélaüsEn mathématiques, et plus précisément en géométrie, le théorème de Ménélaüs, dû à Ménélaüs d'Alexandrie, précise les relations existant entre des longueurs découpées dans un triangle par une sécante. Il en existe une version plane et une version pour le triangle sphérique. Soit un triangle ABC, et trois points D, E et F des droites (BC), (AC) et (AB) respectivement, différents des sommets du triangle. Les points D, E et F sont alignés si et seulement si : Une telle droite est appelée une ménélienne — ou une transversale — du triangle ABC.
Théorème de Pappusvignette|Configuration de Pappus : Dans l'hexagone AbCaBc, où les points A, B, C, d'une part et a, b, c d'autre part, sont alignés, les points X, Y, Z le sont aussi. Le théorème de Pappus est un théorème de géométrie concernant l'alignement de trois points : si on considère trois points alignés A, B, C et trois autres points également alignés a, b, c, les points d'intersection des droites (Ab)-(Ba), (Ac)-(Ca), et (Bc)-(Cb) sont également alignés.
Cercle d'EulerEn géométrie, le cercle d'Euler d'un triangle (aussi appelé cercle des neuf points, cercle de Feuerbach, cercle de Terquem, cercle médian) est l'unique cercle passant par les neuf points remarquables suivants : Les trois milieux des trois côtés du triangle ; Le pied de chacune des trois hauteurs du triangle ; Le milieu de chacun des trois segments reliant l'orthocentre H à un sommet du triangle. Dans son mémoire E325 présenté en 1763, Euler a considéré séparément les deux cercles circonscrits aux triangles et sans noter leur coïncidence .
ConiqueEn géométrie euclidienne, une conique est une courbe plane algébrique, définie initialement comme l’intersection d'un cône de révolution (supposé prolongé à l’infini de part et d’autre du sommet) avec un plan. Lorsque le plan de coupe ne passe pas par le sommet du cône, la conique est dite non dégénérée et réalise l’une des trois formes de courbe suivantes : ellipse, parabole ou hyperbole (le cercle étant un cas particulier de l'ellipse, parfois appelé quatrième forme). Ces courbes sont caractérisées par un paramètre réel appelé excentricité.
Quadrilatère inscriptibleEn géométrie, un quadrilatère inscriptible (ou cyclique ) est un quadrilatère dont les sommets se trouvent tous sur un seul et même cercle. Les sommets sont dits cocycliques. Le quadrilatère est dit inscrit dans le cercle, et le cercle, circonscrit au quadrilatère. Un quadrilatère convexe est inscriptible si et seulement si les quatre médiatrices des côtés sont concourantes. Le point de concours est alors le centre du cercle circonscrit et les médiatrices des diagonales passent par ce point.
Droites concourantesEn mathématiques, des droites concourantes sont des droites qui ont un point d'intersection commun, ce point étant appelé point de concours. Lorsque seules deux droites sont en jeu, le fait qu'elles soient concourantes est équivalent au fait qu'elles soient sécantes, ce qui fait que le vocable ne s'emploie pas dans ce cadre. En revanche, à partir de trois droites en présence, les deux propriétés ne sont pas équivalentes : trois droites concourantes sont nécessairement sécantes deux à deux mais l'implication réciproque est fausse.
Cas dégénéréEn mathématiques, un cas dégénéré peut consister en un objet dont la définition fait apparaître des éléments redondants ou superflus, se ramenant parfois à une définition plus simple. Il peut aussi être vu comme un cas particulier d'une construction générale, ne satisfaisant pas une certaine propriété générique, notamment si ces cas sont rares dans un sens topologique ou en théorie de la mesure.
Droite d'Eulervignette|Droite d'Euler en rouge, médianes en orange, médiatrices en vert, et hauteurs en bleu. Le point rouge est le centre du cercle d'Euler. En géométrie euclidienne, dans un triangle non équilatéral, la droite d'Euler est une droite passant par plusieurs points remarquables du triangle, dont l'orthocentre, le centre de gravité (ou isobarycentre) et le centre du cercle circonscrit. Cette notion s'étend au quadrilatère et au tétraèdre.
Théorème de DesarguesEn mathématiques, le théorème de Desargues, du nom du mathématicien et architecte Girard Desargues, est un théorème de géométrie projective, qui possède plusieurs variantes en géométrie affine. Il s'énonce uniquement en matière d'alignement de points et d'intersection de droites (voir ci-contre). Le théorème de Desargues se démontre dans un plan ou un espace construit sur un corps quelconque (non nécessairement commutatif).
Points cocycliquesEn géométrie, des points du plan sont dits cocycliques s'ils appartiennent à un même cercle. Trois points non alignés du plan sont cocycliques. En effet, tout triangle possède un cercle circonscrit. vignette La propriété précédente est un corollaire du théorème de l'angle inscrit. Si sont les affixes respectives de , la condition précédente s'écrit aussi D'où en utilisant le birapport, la condition équivalente : Le théorème de Ptolémée donne une condition nécessaire et suffisante de cocyclicité de quatre points par leurs distances.