Nombre rationnelUn nombre rationnel est, en mathématiques, un nombre qui peut s'exprimer comme le quotient de deux entiers relatifs. On peut ainsi écrire les nombres rationnels sous forme de fractions notées où , le numérateur, est un entier relatif et , le dénominateur, est un entier relatif non nul. Un nombre entier est un nombre rationnel : il peut s'exprimer sous la forme . Chaque nombre rationnel peut s'écrire d'une infinité de manières différentes sous forme de fraction, par exemple ...
Nombre réelEn mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Développement décimal de l'unitéEn mathématiques, le développement décimal périodique qui s'écrit 0,999..., que l'on dénote encore par ou ou , représente un nombre réel dont on peut montrer que c'est le nombre 1. En d'autres termes, les deux notations 0,999... et 1 sont deux notations différentes pour le même nombre. Les démonstrations mathématiques de cette identité ont été formulées avec des degrés variés de rigueur mathématique, et selon les préférences relatives à la définition des nombres réels, les hypothèses sous-jacentes, le contexte historique et le public visé.
Séparateur décimal et séparateur de milliersUn séparateur décimal est un symbole utilisé pour partager la partie décimale de la partie entière d'un nombre décimal. Ce symbole dépend des conventions régionales du système de numération ; communément, il est représenté par un point dans les systèmes anglo-saxons et par une virgule dans les autres systèmes. Le séparateur de milliers est lui utilisé pour faciliter la lecture des grands nombres en regroupant par ordre de mille. Au Moyen Âge, avant l'apparition de l'imprimerie, les mathématiciens utilisaient une barre (« ̄ ») pour surligner la partie entière d'un nombre.
Système décimalLe système décimal est un système de numération utilisant la base dix. Dans ce système, les puissances de dix et leurs multiples bénéficient d'une représentation privilégiée. Le système décimal est largement le plus répandu. Ainsi sont constituées, par exemple, les numérations : Les peuples ayant une base de numération décimale ont employé, au cours du temps, des techniques variées pour représenter les nombres. En voici quelques exemples. Avec des chiffres pour un, dix, cent, mille, etc.
Notation positionnelleLa notation positionnelle est un procédé d'écriture des nombres, dans lequel chaque position d'un chiffre ou symbole est reliée à la position voisine par un multiplicateur, appelé base du système de numération. Chaque position peut être renseignée par un symbole (notation sans base auxiliaire) ou par un nombre fini de symboles (notation avec base auxiliaire). La valeur d'une position est celle du symbole de position ou celle de la précédente position apparente multipliée par la base.
Chiffrevignette|329x329px|Les dix chiffres des chiffres arabes, par ordre de valeur. Un chiffre est un signe d'écriture utilisé seul ou en combinaison pour représenter des nombres entiers. Dans un système de numération positionnel comme le système décimal, un petit nombre de chiffres suffit pour exprimer n'importe quelle valeur. Le nombre de chiffres du système est la base. Le système décimal, le plus courant des systèmes de numération, comporte dix chiffres représentant les nombres de zéro à neuf.
Limite d'une suiteEn mathématiques, de manière intuitive, la limite d'une suite est l'élément dont les termes de la suite se rapprochent quand les indices deviennent très grands. Cette définition intuitive n'est guère exploitable car il faudrait pouvoir définir le sens de « se rapprocher ». Cette notion sous-entend l'existence d'une distance (induite par la valeur absolue dans R, par le module dans C, par la norme dans un espace vectoriel normé) mais on verra que l'on peut même s'en passer pourvu qu'on ait une topologie.
Suite (mathématiques)vignette|Exemple de suite : les points bleus représentent ses termes. En mathématiques, une suite est une famille d'éléments — appelés ses « termes » — indexée par les entiers naturels. Une suite finie est une famille indexée par les entiers strictement positifs inférieurs ou égaux à un certain entier, ce dernier étant appelé « longueur » de la suite. Lorsque tous les éléments d'une suite (infinie) appartiennent à un même ensemble , cette suite peut être assimilée à une application de dans .
Entier naturelEn mathématiques, un entier naturel est un nombre permettant fondamentalement de compter des objets considérés comme des unités équivalentes : un jeton, deux jetons... une carte, deux cartes, trois cartes... Un tel nombre entier peut s'écrire avec une suite finie de chiffres en notation décimale positionnelle (sans signe et sans virgule). L’étude des entiers naturels est l’objet de l’arithmétique, branche des mathématiques, constituée dès l'Antiquité grecque.